Answer:
C) hydrogen bonding
Explanation:
All atoms and molecules have London Dispersion Forces between them, but they are usually overshadowed but the much stronger forces. In this scenario the major attractive force in HF molecules are hydrogen bonds. Hydrogen bonds are electrostatic forces of attraction found when Hydrogen is bonded to a more electronegative atom such as Oxygen, Chlorine and Fluorine.
<span>The molecular formula that describes the problem is
2CH3COOH (aq) + Ca(OH)2 (s) ---> Ca(CH3COO)2 (aq) + 2H2O (l)
The net equation is written as follows:
2CH3COOH- (aq) + 2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 CH3COO- (aq) + 2H2O (l)
canceling out spectator ions
2H+ (aq) + Ca(OH)2 (s) ---> Ca2+ (aq) + 2 H2O (l)</span>
Answer is: pressure of oxygen is 31,3 kPa.
The total pressure<span> of an ideal gas mixture is the sum of the </span>partial pressures<span> of the gases in the mixture.
p(mixture) = p(helium) + p(oxygen) + p(carbon dioxide).
p(oxygen) = p(mixture) - (p(helium) + p(carbon dioxide)).
p(oxygen) = 101,4 kPa - (68,7 kPa + 1,4 kPa).
p(oxygen) = 101,4 kPa - 70,1 kPa.
p(oxygen) = 31,3 kPa.
</span>
The answer is C a combustion’s reaction
DNA is one and Grow and Develop i think i could be wong let me know i can read up on it some more