Answer:
44 grams of CO₂ will be formed.
Explanation:
The balanced reaction is:
C + O₂ → CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- C: 1 mole
- O₂: 1 mole
- CO₂: 1 mole
Being the molar mass of each compound:
- C: 12 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
By stoichiometry the following mass quantities participate in the reaction:
- C: 1 mole* 12 g/mole= 12 g
- O₂: 1 mole* 32 g/mole= 32 g
- CO₂: 1 mole* 44 g/mole= 44 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
If 12 grams of C react, by stoichiometry 32 grams of O₂ react. But you have 40 grams of O₂. Since more mass of O₂ is available than is necessary to react with 12 grams of C, carbon C is the limiting reagent.
Then by stoichiometry of the reaction, you can see that 12 grams of C form 44 grams of CO₂.
<u><em>44 grams of CO₂ will be formed.</em></u>
Answer:
a)M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88 g/mol
b) if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
Explanation:
0.2000 gHZ gives 100ml acid solution
33.5 ml of 0.1025 M NaOH is required to prepare it
the moles = mass / molar mass
mass = 0.200 gHZ
moles = 0.0335*100 * 0.1025 = 0.034
therefore molar mass = mass / moles
M=0.20/(0.335*0.1025)= 0.20/ 0.034 = 5.88
if 0.100g is used instead of 0.200g
M = 0.1 / 0.034 = 2.94 hence the molar mass will be too low
The salt contains ionic bond so that it dissociate ultimately by the movement of ion electricity is conducted
Answer:
B.
Explanation:
One mole is the amount of substance that contain the Avogadro number which is equal to 6.022×10^23 atom, molecules or ions.