Answer:

Explanation:
From the question we are told that:
Height 
Radius 
Height of water 
Gravity 
Density of water 
Generally the equation for Volume of water is mathematically given by


Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by

Substituting dv


Therefore




![W=3420.84*0.25[2401-65536]](https://tex.z-dn.net/?f=W%3D3420.84%2A0.25%5B2401-65536%5D)


'
'
Answer: True
Explanation: When light is reflected off lets say a mirror it is bent and changes direction to bounce off of another wall or object. For example if you take a flash light and shine it into a mirror the light reflects into a different direction your welcome
Answer:
Explanation:
Mass of nails is 0.25kg
Mass of hammer 5.2kg
Speed of hammer is =52m/s
Then, Ben kinetic energy is given as
K.E= ½mv²
K.E= ½×5.2×52²
K.E= 7030.4J
Given that, two-fifth of kinetic energy is converted to internal energy
Internal energy (I.E) = 2/5 × K.E
Internal energy (I.E) = 2/5 × 7030.4
I.E=2812.16J.
Energy increase is total Kinetic energy - the internal energy
∆Et= K.E-I.E
∆Et= 7030.4 - 2812.16
∆Et= 4218.24J
if the color changes, it is neutral but if it stays the same, it is an acid.
Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 