Answer:
Knowing we only have one load applied in just one direction we have to use the Hooke's law for one dimension
ex = бx/E
бx = Fx/A = Fx/π
Using both equation and solving for the modulus of elasticity E
E = бx/ex = Fx / π
ex
E = 
Apply the Hooke's law for either y or z direction (circle will change in every direction) we can find the change in radius
ey =
(бy - v (бx + бz)) =
бx
=
= 
Finally
ey = Δr / r
Δr = ey * r = 10 * 
Δd = 2Δr = 
Explanation:
Answer:
1)
is<u> positive.</u>
<u></u>
2) 
Explanation:
<h2><u>
Part 1:</u></h2>
<u></u>
The charged rod is held above the balloon and the weight of the balloon acts in downwards direction. To balance the weight of the balloon, the force on the balloon due to the rod must be directed along the upwards direction, which is only possible when the rod exerts an attractive force on the balloon and the electrostatic force on the balloon due to the rod is attractive when the polarities of the charge on the two are different.
Thus, In order for this to occur, the polarity of charge on the rod must be positive, i.e.,
is <u>positive.</u>
<u></u>
<h2><u>
Part 2:</u></h2>
<u></u>
<u>Given:</u>
- Mass of the balloon, m = 0.00275 kg.
- Charge on the balloon,

- Distance between the rod and the balloon, d = 0.0640 m.
- Acceleration due to gravity,

In order to balloon to be float in air, the weight of the balloom must be balanced with the electrostatic force on the balloon due to rod.
Weight of the balloon, 
The magnitude of the electrostatic force on the balloon due to the rod is given by

is the Coulomb's constant.
For the elecric force and the weight to be balanced,

Answer:
The value is 
Explanation:
From the question we are told that
The distance of separation is 
The current on the one wire is 
The current on the second wire is 
Generally the magnitude of the field exerted between the current carrying wire is

Here
is the magnetic field due to the first wire which is mathematically represented as

Here
is the distance to the half way point of the separation and the value is

is the magnetic field due to the first wire which is mathematically represented as

Here
is the distance to the half way point of the separation and the value is
This means that 
So

=> 
=> 
=> 