We need to consider for this exercise the concept Drag Force and Torque. The equation of Drag force is

Where,
F_D = Drag Force
= Drag coefficient
A = Area
= Density
V = Velocity
Our values are given by,
(That is proper of a cone-shape)



Part A ) Replacing our values,


Part B ) To find the torque we apply the equation as follow,



Explanation:
36-4/4= 9 m/squared. meter per squared.
acceleration unit is meter per second Square.equation is velocity by time.for average final(36) minus initial(4)
By looking at the acceleration of the object.
In fact, Netwon's second law states that the resultant of the forces acting on an object is equal to the product between the mass m of the object and its acceleration:

So, when static friction is acting on the object, if the object is still not moving we know that all the forces are balanced: in fact, since the object is stationary, its acceleration is zero, and so the resultant of the forces (left term in the formula) must be zero as well (i.e. the forces are balanced).
Answer:
2632 foot-pound
Explanation:
Work done: Work is said to be done when ever a force moves a body through a given distance. The S.I unit of force is Newton (N).
From the question,
The expression for work done is given as,
W = Fdcos∅......................... Equation 1
Where W = work done, F = force, d = distance, ∅ = angle between the force and the horizontal.
Given: F = 32 lbs, d = 90 feet, ∅ = 24°
substitute into equation 1
W = 32×90×cos24
W = 2880(0.914)
W = 2632.32
W = 2632 foot-pound