1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
3 years ago
5

The total amount of energy contained in an object

Physics
1 answer:
Elenna [48]3 years ago
7 0

The total amount of energy stored in the particles of an object is called its internal energy. The internal energy of an object is made up of the kinetic energy due to the random motion of the particles and the potential energy due to the interactive forces among the particles.

You might be interested in
A perfectly elastic collision occurs between a 15.0-kg mass traveling at 3.50 m/s and a 9.00-kg mass traveling at 2.35 m/s. if t
BaLLatris [955]
Momentum is conserved in a collision. Momentum is mass*velocity, so you can find your answer by calculating initial and final momentums and setting them equal to each other.

15kg * 3.50 m/s + 9kg * 2.35 m/s = 73.65 kg m/s

73.65 = 9 * 2.8 + 15x

solve for x
x= 3.23

The final velocity is 3.23 m/s
5 0
3 years ago
Find the position vector of a particle that has the given acceleration and the specified initial velocity and position. a(t) = 1
kondor19780726 [428]

Answer:

Explanation:

Given

Acceleration a(t)=14t\hat{i]+\sin (t)\hat{j}+\cos (2t)\hat{k}[/tex]

and v(0)=\hat{i}

r(0)=\hat{j}

we know a=\frac{\mathrm{d} v}{\mathrm{d} t}

\int dv=\int adt

v(t)=\int (14t\hat{i}+\sin (t)\hat{j}+\cos (2t)\hat{k})dt

v(t)=7t^2\hat{i}-\cos t\hat{j}+\frac{\sin (2t)\hat{k}}{2}+c

at t=0

v(0)=0-1\cdot \hat{j}+0+c

c=\hat{i}+\hat{j}

v(t)=(7t^2+1)\hat{i}+(1-\cos t)\hat{j}+\frac{\sin (2t)\hat{k}}{2}

and \frac{\mathrm{d} r}{\mathrm{d} t}=v(t)

\int dr=\int vdt

r(t)=\int ((7t^2+1)\hat{i}+(1-\cos t)\hat{j}+\frac{\sin (2t)\hat{k}}{2})dt

r(t)=(\frac{7}{2}t^3+t)\hat{i}+(t-\sin (t))\hat{j}+\frac{1}{2}\times (-\frac{1}{2}\cos 2t)\hat{k}+c_2

at t=0

r(0)=\hat{j}

r(t)=(\frac{7}{3}t^3+t)\hat{i}+(1+t-\sin t)\hat{j}+\frac{1}{4}(1-\cos 2t)\hat{k}

       

4 0
3 years ago
3 In a television tube, an electron starting from rest experiences a force of 4.0 × 10−15 N over a distance of 50 cm. The final
MAXImum [283]

Answer:

The final speed of the electron = 2.095×10⁸ m/s

Explanation:

From newton's fundamental equation of dynamics,

F = ma ........................Equation 1

Where F = force, m = mass of the electron, a = acceleration of the electron.

making a the subject of the equation,

a = F/m.................... Equation 2

Given: F = 4.0×10⁻¹⁵ N,

Constant: m =  9.109×10⁻³¹ kg.

Substituting into equation 2

a = 4.0×10⁻¹⁵/9.109×10⁻³¹

a = 4.39×10¹⁶ m/s².

Using newton's equation of motion,

v² = u²+2as .......................... Equation 3

Where v = final velocity of the electron, u = initial velocity of the electron, a = acceleration of the electron, s = distance covered by the electron.

Given: u = 0 m/s(at rest), s = 50 cm = 0.5 m, a = 4.39×10¹⁶ m/s²

Substituting into equation 3

v² = 0² + 2(0.5)(4.39×10¹⁶)

v = √(4.39×10¹⁶)

v = 2.095×10⁸ m/s

Thus the final speed of the electron = 2.095×10⁸ m/s

7 0
3 years ago
Problem One: A beam of red light (656 nm) enters from air into the side of a glass and then into water. wavelength, c. and speed
Ivanshal [37]

Answer:

Part a)

f_w = f_g = 4.57 \times 10^{14} Hz

Part b)

\lambda_w = 492 nm

\lambda_g = 437.3 nm

Part c)

v_w = 2.25 \times 10^8 m/s

v_g = 2.0 \times 10^8 m/s

Explanation:

Part a)

frequency of light will not change with change in medium but it will depend on the source only

so here frequency of light will remain same in both water and glass and it will be same as that in air

f = \frac{v}{\lambda}

f = \frac{3 \times 10^8}{656 \times 10^{-9}}

f = 4.57 \times 10^{14} Hz

Part b)

As we know that the refractive index of water is given as

\mu_w = 4/3

so the wavelength in the water medium is given as

\lambda_w = \frac{\lambda}{\mu_w}

\lambda_w = \frac{656 nm}{4/3}

\lambda_w = 492 nm

Similarly the refractive index of glass is given as

\mu_w = 3/2

so the wavelength in the glass medium is given as

\lambda_g = \frac{\lambda}{\mu_g}

\lambda_g = \frac{656 nm}{3/2}

\lambda_g = 437.3 nm

Part c)

Speed of the wave in water is given as

v_w = \frac{c}{\mu_w}

v_w = \frac{3 \times 10^8}{4/3}

v_w = 2.25 \times 10^8 m/s

Speed of the wave in glass is given as

v_g = \frac{c}{\mu_g}

v_g = \frac{3 \times 10^8}{3/2}

v_g = 2 \times 10^8 m/s

4 0
3 years ago
Water is a(n) ____ factor in all ecosystem that all living things require.<br> (Fill in the blank)
BaLLatris [955]
Biotic i think is the answer
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the relationship between the normal force and weight
    11·1 answer
  • Which of the following happens during a lunar eclipse? The moon appears red. The moon casts a shadow on Earth. Earth, the moon a
    9·2 answers
  • Conduction stops when all substances have
    14·2 answers
  • An electron with a kinetic energy of 3.90 ev collides with a sodium atom.
    8·1 answer
  • Classify the planets as inner planets of outer planets explain your answer​
    6·1 answer
  • Leo drew a force diagram to represent a satellite in orbit
    5·2 answers
  • Prior to the music CD, stereo systems had a phonographic turntable on which vinyl disk recordings were played. A particular phon
    15·1 answer
  • jaka siła pełni rolę siły dośrodkowej w przypadku krzesełka kręcocego się na karuzeli przy akrobacji lotniczych
    13·1 answer
  • A vertical tube one meter long is open at the top. It is filled with 50 cm of water. If the velocity of sound is 344 m/s, what w
    10·1 answer
  • In this equation Fs=-kx, Fs means:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!