A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
Answer:
When we talk about residential uses of energy, these are the most basic uses of energy . They include watching television, washing clothes, heating and lighting at home , taking a shower, working from home on your laptop or computer, running appliances and cooking.
Answer:
Doing science could be defined as carrying out scientific processes, like the scientific method, to add to science's body of knowledge.