1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leto [7]
2 years ago
5

PLS HELP!! IN QUIZ RN!

Physics
1 answer:
kakasveta [241]2 years ago
6 0

Answer:

D Energy Transformation

You might be interested in
A physics student looks into a microscope and observes that small particles suspended in water are moving about in an irregular
Dominik [7]

Answer:

d. the actual motion is regular, but the speeds of particles are too large to observe the regular motion

Explanation:

The speeds of the particles are very large and comparatively the average  free path is very small . Therefore time taken in covering the free path ( path between two consecutive collision with medium particles ) is very small . Hence the st line  path covered by particles between two collision is less likely to be visible. Hence motion appears irregular or zig-zag.

6 0
3 years ago
Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
frosja888 [35]

Answer:

C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀)  we see that for the same t v₁> v₂

Explanation:

You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.

Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.

Stone 1

    y₁ = v₀₁ t + ½ g t²

    y₁ = 0 + ½ g t²

Rock2

It comes out a little later, let's say a second later, we can use the same stopwatch

     t ’= (t-t₀)

    y₂ = v₀₂ t ’+ ½ g t’²

    y₂ = 0 + ½ g (t-t₀)²

    y₂ = + ½ g (t-t₀)²

Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to

    S = y₁ -y₂

    S = ½ g t²– ½ g (t-t₀)²

    S = ½ g [t² - (t²- 2 t to + to²)]  

    S = ½ g (2 t t₀ - t₀²)

    S = ½ g t₀ (2 t -t₀)

This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.

For t <to.  The rock y has not left and the distance increases

For t> = to.  the ratio (2t/to-1)> 1 therefore the distance increases as time

passes

Now we can analyze the different statements

A) false. The difference in height increases over time

B) False S increases

C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t   v₁> v₂

3 0
3 years ago
A car moves 20 km towards the North and then 35 km at an angle of 60o towards west of North. Its magnitude of displacement from
Law Incorporation [45]

Answer:

15

Explanation:

displacement = initial position - final position

8 0
2 years ago
How does surface air flow in a middle-latitude cyclone in the northern hemisphere? (1 point)?
Vikki [24]

convergent and counterclockwise

hope it helps :)

3 0
3 years ago
Read 2 more answers
An example of when total internal reflection occurs is when all the light passing from a region of higher index of refraction to
Amiraneli [1.4K]

Answer:

is reflected back into the region of higher index

Explanation:

Total internal reflection is a phenomenon that occurs when all the light passing from a region of higher index of refraction to a region of lower index is reflected back into the region of higher index.

According to Snell's law, refraction of ligth is described by the equation

n_1 sin \theta_1 = n_2 sin \theta_2

where

n1 is the refractive index of the first medium

n2 is the refractive index of the second medium

\theta_1 is the angle of incidence (in the first medium)

\theta_2 is the angle of refraction (in the second medium)

Let's now consider a situation in which

n_1 > n_2

so light is moving from a medium with higher index to a medium with lower index. We can re-write the equation as

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

Where \frac{n_1}{n_2} is a number greater than 1. This means that above a certain value of the angle of incidence \theta_1, the term on the right can become greater than 1. So this would mean

sin \theta_2 > 1

But this is not possible (the sine cannot be larger than 1), so no refraction occurs in this case, and all the light is reflected back into the initial medium (total internal reflection). The value of the angle of incidence above which this phenomen occurs is called critical angle, and it is given by

\theta_c =sin^{-1}(\frac{n_2}{n_1})

8 0
3 years ago
Other questions:
  • The hardest known natural material is _____.
    12·2 answers
  • Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-r
    15·2 answers
  • A construction worker pushes a wheelbarrow with a total mass of 50.0kg. What is the acceleration of the wheelbarrow if the net f
    5·1 answer
  • A 243 mL cup of whole milk contains about 45 mg of cholesterol. Express the cholesterol concentration of the milk in kilograms p
    13·1 answer
  • Calculate the number of molecules/m3 in an ideal gas at stp.
    14·1 answer
  • A toy of mass 0.155 kg is undergoing simple harmonic motion (SHM) on the end of a horizontal spring with force constant 305 N/m
    13·1 answer
  • Describe four energy changes that happen in the process.
    6·1 answer
  • A que polo de la unabateria electrica regresan los electrones​
    8·1 answer
  • 3. Two fans blow at 5 ms^-1 in a easterly direction and 8ms^-1 in a Northerly
    6·1 answer
  • HEEEYYYYY HELLO CAN YOU HELP ME WITH THIS ? PLEASE? ​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!