Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s
Answer:
yes
Explanation:
I would say yes because it's exerting some type of force as it reacts to the stick to make it jump straight in an upwards direction
Answer: 500 joules
Explanation:
Given that
Mass of ball = 10kg
kinetic energy = ?
velocity of the ball = 10m/s
Kinetic energy is the energy possessed by a moving object. It is measured in joules, and depends on the mass (m) of the object and the velocity (v) by which it moves
i.e K.E = 1/2mv²
K.E = 1/2 x 10kg x (10m/s)²
K.E = 0.5 x 10kg x (10m/s)²
K.E = 5 x 100
K.E = 500 joules
Thus, the kinetic energy of the ball is 500 joules
In this problem we have the electric field intensity E:
E = 6.5 ×
newtons/coulomb
We have the magnitude of the load:
q = 6.4 ×
coulombs
We also have the distance d that the load moved in a direction parallel to the field 1.2 ×
meters.
We know that the electric potential energy (PE) is:
PE = qEd
So:
PE = (6.4 ×
)(6.5 ×
)(1.2 ×
)
PE = 5.0 x
joules
None of the options shown is correct.