1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
6

A positive point charge q1 = +5.00 × 10−4C is held at a fixed position. A small object with mass 4.00×10−3kg and charge q2 = −3.

00×10−4C is projected directly at q1. Ignore gravity. When q2 is 4.00m away, its speed is 800m/s. What is its speed when it is 0.200m from q1?
Physics
1 answer:
Lelechka [254]3 years ago
5 0

Answer:

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

Explanation:

Energy conservation law: In isolated system the amount of total energy remains constant.

The types of energy are

  1. Kinetic energy.
  2. Potential energy.

Kinetic energy =\frac{1}{2} mv^2

Potential energy =\frac{Kq_1q_2}{d}

Here, q₁= +5.00×10⁻⁴C

q₂=-3.00×10⁻⁴C

d= distance = 4.00 m

V = velocity = 800 m/s

Total energy(E) =Kinetic energy+Potential energy

                      =\frac{1}{2} mv^2+ \frac{Kq_1q_2}{d}

                     =\frac{1}{2} \times 4.00\times 10^{-3}\times(800)^2 +\frac{9\times10^9\times 5\times10^{-4}\times(-3\times10^{-4})}{4}

                    =(1280-337.5)J

                    =942.5 J

Total energy of a system remains constant.

Therefore,

E =\frac{1}{2} mv^2 + \frac{Kq_1q_2}{d}

\Rightarrow  942.5 = \frac{1}{2} \times 4 \times10^{-3} \times V^2 +\frac{9\times10^{9}\times5\times 10^{-4}\times(-3\times 10^{-4})}{0.2}

\Rightarrow 942.5 = 2\times10^{-3}v^2 -6750

\Rightarrow 2 \times10^{-3}\times v^2= 942.5+6750

\Rightarrow v^2 = \frac{7692.5}{2\times 10^{-3}}

\Rightarrow v= 1961.19   m/s

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

You might be interested in
A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.460 Hz. The pendulum ha
zlopas [31]

Answer:

The  moment of inertia is  I =1.0697 \ kg m^2

Explanation:

From the question we are told that

    The  frequency is  f  =  0.460 \ Hz

    The  mass of the pendulum is  m  =  2.40  \ kg

    The  location of the pivot from the center is d  =  0.380 \ m

     

Generally the period of the simple harmonic motion is mathematically represented as

        T   = 2 \pi  *  \sqrt{  \frac{I}{ m  *  g *  d  } }

Where I is the moment of inertia about the pivot point , so making I the subject of the formula it

=>    I =  [ \frac{T}{2 \pi } ]^2 *  m*  g * d

But the period of this simple harmonic motion can also be represented mathematically as

        T  =  \frac{1}{f}

substituting values

      T  =  \frac{1}{0.460}

      T  =  2.174 \ s

So

      I =  [ \frac{2.174}{2 * 3.142 } ]^2 *   2.40*  9.8 * 0.380

      I =1.0697 \ kg m^2

4 0
3 years ago
What does density have to do with heat?
joja [24]
If you take a fluid (i.e. air or water) and heat it, the portion that is heated usually expands. The same mass takes up more volume and as a consequence the heated portion becomes less dense than the portion that is<span><span> not heated.</span> </span>
8 0
3 years ago
Read 2 more answers
DEFINE REFRACTION? describe how a ray of light is refracted when it passes through a glass block​
jek_recluse [69]
When a ray passes from air into glass the direction in which the light ray is travelling changes. The light ray appears to bend as it as it passes through the surface of the glass. ... This 'bending of a ray of light' when it passes from one substance into another substance is called refraction.
8 0
3 years ago
A car traveling at 27.4 m/s hits a bridge abutment. A passenger in the car, who has a mass of 65.0 kg, moves forward a distance
Minchanka [31]

Answer:

F=43570.9N

Explanation:

We can calculate the acceleration experimented by the passenger using the formula v_f^2=v_i^2+2ad, taking the initial direction of movement as the positive direction and considering it comes to a rest:

a=\frac{v_f^2-v_i^2}{2d}=\frac{-v_i^2}{2d}

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

F=ma=\frac{-mv_i^2}{2d}

Which for our values is:

F=\frac{-(65kg)(27.4m/s)^2}{2(0.56m)}=43570.9N

6 0
3 years ago
Two large, plastic tubs were filled with soil The soil was shaped to create a mound in each tub. The starting height of each mou
shutvik [7]

Answer:

b

Explanation:

6 0
2 years ago
Other questions:
  • Which heavenly bodies are involved in causing the earths tides?
    9·1 answer
  • Within the electron cloud there are different _______________ of electrons. A) types B) energy levels C) atomic masses D) electr
    6·2 answers
  • Electromagnetic force is present when electromagnetic fields
    6·2 answers
  • An object is dropped from 42m tall building. How long does It take to reach the ground?
    7·1 answer
  • A homeowner is trying to move a stubborn rock from his yard. By using a a metal rod as a lever arm and a fulcrum (or pivot point
    10·1 answer
  • The probability that a battery will last 10 hr or more is 0.8, and the probability that it will last 15 hr or more is 0.11. Give
    15·1 answer
  • Can someone help with this question please :) will mark brainliest
    13·1 answer
  • A 2800 kg speedboat starting from rest attains a speed of 16 m/s in 8.0 s as a combination of 1200 N of air resistance and water
    8·1 answer
  • Does the Sun actually turn dark during a total solar eclipse? Why or why not?
    6·2 answers
  • An energy source will supply a constant current into the load if its internal resistance is.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!