1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
6

A positive point charge q1 = +5.00 × 10−4C is held at a fixed position. A small object with mass 4.00×10−3kg and charge q2 = −3.

00×10−4C is projected directly at q1. Ignore gravity. When q2 is 4.00m away, its speed is 800m/s. What is its speed when it is 0.200m from q1?
Physics
1 answer:
Lelechka [254]3 years ago
5 0

Answer:

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

Explanation:

Energy conservation law: In isolated system the amount of total energy remains constant.

The types of energy are

  1. Kinetic energy.
  2. Potential energy.

Kinetic energy =\frac{1}{2} mv^2

Potential energy =\frac{Kq_1q_2}{d}

Here, q₁= +5.00×10⁻⁴C

q₂=-3.00×10⁻⁴C

d= distance = 4.00 m

V = velocity = 800 m/s

Total energy(E) =Kinetic energy+Potential energy

                      =\frac{1}{2} mv^2+ \frac{Kq_1q_2}{d}

                     =\frac{1}{2} \times 4.00\times 10^{-3}\times(800)^2 +\frac{9\times10^9\times 5\times10^{-4}\times(-3\times10^{-4})}{4}

                    =(1280-337.5)J

                    =942.5 J

Total energy of a system remains constant.

Therefore,

E =\frac{1}{2} mv^2 + \frac{Kq_1q_2}{d}

\Rightarrow  942.5 = \frac{1}{2} \times 4 \times10^{-3} \times V^2 +\frac{9\times10^{9}\times5\times 10^{-4}\times(-3\times 10^{-4})}{0.2}

\Rightarrow 942.5 = 2\times10^{-3}v^2 -6750

\Rightarrow 2 \times10^{-3}\times v^2= 942.5+6750

\Rightarrow v^2 = \frac{7692.5}{2\times 10^{-3}}

\Rightarrow v= 1961.19   m/s

Therefore the speed of q₂ is 1961.19 m/s when it is 0.200 m from from q₁.

You might be interested in
A 2.1 kg block is dropped from rest from a height of 5.5 m above the top of the spring. When the block is momentarily at rest, t
ella [17]

Answer:

The speed of the block is 8.2 m/s

Explanation:

Given;

mass of block, m = 2.1 kg

height above the top of the spring, h = 5.5 m

First, we determine the spring constant based on the principle of conservation of potential energy

¹/₂Kx² = mg(h +x)

¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)

0.03125K = 118.335

K = 118.335 / 0.03125

K = 3786.72 N/m

Total energy stored in the block at rest is only potential energy given as:

E = U = mgh

U = 2.1 x 9.8 x 5.5 = 113.19 J

Work done in compressing the spring to 15.0 cm:

W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J

This is equal to elastic potential energy stored in the spring,

Then, kinetic energy of the spring is given as:

K.E = E - W

K.E = 113.19 J - 42.6 J

K.E = 70.59 J

To determine the speed of the block due to this energy:

KE =  ¹/₂mv²

70.59 =  ¹/₂ x 2.1 x v²

70.59 = 1.05v²

v² = 70.59 / 1.05

v² = 67.229

v = √67.229

v = 8.2 m/s

8 0
3 years ago
Read 2 more answers
Suppose a shrimp has been put on the ground that has just been taken out of water.Now touch the shrimp from a distance by a stic
Alex777 [14]

Answer:

yes

Explanation:

I would say yes because it's exerting some type of force as it reacts to the stick to make it jump straight in an upwards direction

4 0
3 years ago
Read 2 more answers
The kinetic energy of a 10 Kg ball rolling at 10 meters per second is how many joules
Ulleksa [173]

Answer: 500 joules

Explanation:

Given that

Mass of ball = 10kg

kinetic energy = ?

velocity of the ball = 10m/s

Kinetic energy is the energy possessed by a moving object. It is measured in joules, and depends on the mass (m) of the object and the velocity (v) by which it moves

i.e K.E = 1/2mv²

K.E = 1/2 x 10kg x (10m/s)²

K.E = 0.5 x 10kg x (10m/s)²

K.E = 5 x 100

K.E = 500 joules

Thus, the kinetic energy of the ball is 500 joules

6 0
4 years ago
A charge q of magnitude 6.4 × 10^-19 coulombs moves from point A to point B in an electric field of 6.5 × 10^4 newtons/coulomb.
lana [24]

In this problem we have the electric field intensity E:

E = 6.5 × 10^4 newtons/coulomb

We have the magnitude of the load:

q = 6.4 × 10 ^{-19} coulombs

We also have the distance d that the load moved in a direction parallel to the field 1.2 × 10^{-2} meters.

We know that the electric potential energy (PE) is:

PE = qEd

So:

PE = (6.4 × 10^{-19})(6.5 × 10^4)(1.2 × 10^{-2})

PE = 5.0 x 10^{-16} joules

None of the options shown is correct.

6 0
3 years ago
A low-pass first-order instrument has a time constant of 20 ms. find the frequency, in hertz, of the input at which the output w
Vladimir [108]
?????????????????????????????
8 0
4 years ago
Other questions:
  • Which do you think would stronger the gravitational interaction between an apple and earth or the gravitational interaction betw
    8·2 answers
  • how quickly can you react when someone flashes a lamb? Suggest how you could font out an answer to this question. ​
    13·1 answer
  • What does the heliocentric view of a solar system imply
    15·2 answers
  • 6.Which of the following statements illustrates a characteristic of a person's attitudes?
    14·2 answers
  • A car accelerates at a rate of 3 m/s^2. If its original speed is 8 m/s, how many seconds will it take the car to reach a final s
    10·1 answer
  • A monkey with 4.5 kg of mass falls while swinging from a tree 10 meters above the ground. What is its GPE while it is on the tre
    15·1 answer
  • A compact car has a mass of 1300 kg . When empty, the car bounces up and down on its springs 1.5 times per second. What is the c
    12·1 answer
  • Sophia was studying with Maalik about the layers of the Earth. They were given several different statements about the layers. Wh
    12·2 answers
  • What is heroism???<br><br><br>plz answer​
    14·1 answer
  • What would be the greatest effect of the finite size of molecules on the ideal gas law?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!