1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
12

A mass of 10 kg is at a point A on the table. It moved to a point B. If the line joining A and B is horizontal. What is the work

done on the object by the gravitational force ? Explain your answer
Physics
1 answer:
elena55 [62]3 years ago
6 0

Answer:

Work done by gravitational force = 0 joule

Explanation:

Work done is given by the relation

                        W  =  F   x    S   joule

Where,    F  -  the force applied in the form of push or pull

               S  -  displacement caused by the force

If a force is acting on a body and it doesn't cause any displacement, then work done will be zero.

Gravitational force acts on the body even if the body is at rest.

<em>Work done by the gravitational is applicable only if there is some vertical component of motion involved.</em>

In this case, some amount of work is done to move the body from point A to B.But, the body is displaced in the horizontal direction. No vertical motion is involved.

So, the work done due to gravitational force on a mass is zero joule.

You might be interested in
A ball is launched horizontally at 4 m/s
ArbitrLikvidat [17]

Answer:

3.5 seconds of flight time; 13.9 m from the base of the cliff

Explanation:

3 0
3 years ago
At t=0, a block A of mass 8 kg and block B of mass 16 kg are both at position x=0 . Block A is at rest, and block B is moving at
love history [14]

The center of mass of the two objects is the average position of the parts of the two object system

The center of mass of block <em>A</em>, and block <em>B</em>  after displacement of block <em>B</em> is at <u>20 m from block </u><u><em>A</em></u>

<em />

Reason:

The given parameters are;

The position of block A and block B at t = 0 is x = 0

The mass of block A, m₁ = 8 kg

Mass of block B, m₂ = 16 kg

Speed of block <em>A</em> = 0 m/s

Speed of block <em>B</em>, v₂ = 10 m/s

Location of the center of mass of the two object at t = 3 s; Required

Solution;

The location of block <em>A</em>, after 3 s is x₁ = 0 (block A is at rest)

The location of block <em>B</em>, = v₂ × t

The location of block <em>B</em>, after 3 s is x₂ = 10 m/s × 3 s = 30 m

The center of mass of two masses are given as follows;

x_{cm} = \dfrac{m_1 \cdot x_1 +m_2\cdot x_2}{m_1 + m_2}

x_{cm} = \dfrac{8  \times0 + 16 \times  30}{8 + 16} = 20

The center of mass of the two objects is at at the position x = <u>20 m</u> (from block <em>A</em>)

Learn more about the center of mass here:

brainly.com/question/18557256

brainly.com/question/20714030

brainly.com/question/17088562

4 0
3 years ago
A swimmer is capable of swimming 0.42 m/s in still water. part a if she aims her body directly across a 66-m-wide river whose cu
satela [25.4K]
<span>If the swimmer is swimming perpendicular to the current, it will take her 66m / 0.42 m/s = 157.14 seconds to cross the river. At the same time, the current will be taking her downstream at a rate of 0.32 m/s. So, when she reaches the opposite bank, her total downstream distance traveled will have been 0.32*157.14 = 50.28 meters.</span>
3 0
3 years ago
A concave mirror has a radius of curvature of 0.60 meter.
love history [14]
Pls give me brainliest!!!
6 0
3 years ago
car 2 has a mass of 150 kg and moves westward towards car 3 at a velocity of 2.2 m/s. car 3 has a mass of 265 kg and moves eastw
sergejj [24]

Answer:

The force of car 3 on car 2 ≈ 1810.82 N

Explanation:

The equation for the change in momentum of the two cars are;

Conservation of linear momentum

150( 2.2 - v) = 265(1.5-v)

150 × 2.2 - 265×1.5 = (150+265)v

150 × 2.2 - 265×1.5 = -67.5 = 415×v

∴ v = -67.5/415 = -0.1627 m/s West = 0.1627 m/s East

The impulse of the net force is the amount of momentum change experienced given by the equation;

Impulse force = m \times  v_f - m \times  v_0

Where;

v_f = The final velocity

v_0 = The initial velocity

For the the 265 kg mass, we have;

v_f = 0.1627 m/s

v_0 = 1.5 m/s

Which gives the impulse a s F×Δt =  265×0.1627 - 265×1.5 = -354.38 kg·m/s

The change in kinetic energy of the collision = 1/2×265×(0.1627^2 - 1.5^2) =-294.62 J

Whereby the distance moved in one second is 0.1627 m, we have;

Work done = Force × Distance = Force × 0.1627 = 294.62

Force = 294.62/0.1627 = 1810.82 N.

8 0
3 years ago
Other questions:
  • A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground.
    7·1 answer
  • Two charged concentric spherical shells have radii 8.83 cm and 15.4 cm. The charge on the inner shell is 5.03 × 10⁻⁸ C and that
    5·1 answer
  • A water skier is pulled by a boat traveling with a constant velocity. Which one of the following statements is false concerning
    14·1 answer
  • Hw2-2 - show all your work, including the equation, express all answers in base units, (m, m/s, m/s2), unless stated otherwise i
    5·1 answer
  • 8. You are heating a substance in a test tube. Always point the open end of the ne
    15·1 answer
  • Identical rays of light in air are refracted upon entering three transparent materials:
    8·1 answer
  • The amplitude of a wave is
    10·1 answer
  • The electric field force is a ___________ quantity.
    10·1 answer
  • A cruise ship travels across a river at 25 meters per minute. If the river is 6200 meters wide, how long
    6·1 answer
  • How should i fix an overfilled ballon? its my sisters 3rd birthday and i have overfilled all the ballons and there is no other o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!