The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>
Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!
distance to the star Betelgeuse: 640 ly
As we know that

also we know that


So the distance of Betelgeuse = 640 ly

distance to the star VY Canis Majoris: 


distance to the galaxy Large Magellanic Cloud: 49976 pc


now we have


distance to Neptune at the farthest: 4.7 billion km

now the order of distance from least to greatest is as following
1. distance to Neptune at the farthest
2. distance of Betelgeuse
3. distance to the star VY Canis Majoris
4. distance to the galaxy Large Magellanic Cloud
Answer:
Tension = 0.012 N
Explanation:
If the black widow spider is hanging vertically motionless from the ceiling above. Then, the weight of the spider must be balancing the tension in the spider web. Therefore,
Tension = Weight
Tension = mg
where,
m = mass of spider = 1.27 g = 0.00127 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
Tension = (0.00127 kg)(9.8 m/s²)
<u>Tension = 0.012 N</u>