Answer:
The moment of inertia of the system decreases and the angular speed increases.
Explanation:
This very concept might not seem to be interesting at first, but in combination with the law of the conservation of angular momentum, it can be used to describe many fascinating physical phenomena and predict motion in a wide range of situations.
In other words, the moment of inertia for an object describes its resistance to angular acceleration, accounting for the distribution of mass around its axis of rotation.
Therefore, in the course of this action, it is said that the moment of inertia of the system decreases and the angular speed increases.
The correct answer is C. Plug in x and y value for answers to see if they work. For example, 9/3 = 3. So C is the answer.
Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer
A softball has a (negative) acceleration when it is thrown. A soft ball has a (positive) acceleration when it is caughtExplanation:
Answer:
The electric flux is zero because charge is zero.
Explanation:
Given that,
Positive charge 
Negative charge 
We need to calculate the total charged
Using formula of charge

Put the value into the formula


We need to calculate the electric flux
Using formula of electric flux

Put the value into the formula

Hence, The electric flux is zero because charge is zero.