Answer:
23.0733 L
Explanation:
The mass of hydrogen peroxide present in 125 g of 50% of hydrogen peroxide solution:

Mass = 62.5 g
Molar mass of
= 34 g/mol
The formula for the calculation of moles is shown below:
Thus, moles are:

Consider the given reaction as:

2 moles of hydrogen peroxide decomposes to give 1 mole of oxygen gas.
Also,
1 mole of hydrogen peroxide decomposes to give 1/2 mole of oxygen gas.
So,
1.8382 moles of hydrogen peroxide decomposes to give ![\frac {1}{2}\times 1.8382 mole of oxygen gas. Moles of oxygen gas produced = 0.9191 molGiven: Pressure = 746 torr The conversion of P(torr) to P(atm) is shown below: [tex]P(torr)=\frac {1}{760}\times P(atm)](https://tex.z-dn.net/?f=%5Cfrac%20%7B1%7D%7B2%7D%5Ctimes%201.8382%20mole%20of%20oxygen%20gas.%20%3C%2Fp%3E%3Cp%3EMoles%20of%20oxygen%20gas%20produced%20%3D%200.9191%20mol%3C%2Fp%3E%3Cp%3EGiven%3A%20%3C%2Fp%3E%3Cp%3EPressure%20%3D%20746%20torr%0A%3C%2Fp%3E%3Cp%3EThe%20conversion%20of%20P%28torr%29%20to%20P%28atm%29%20is%20shown%20below%3A%0A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%28torr%29%3D%5Cfrac%20%7B1%7D%7B760%7D%5Ctimes%20P%28atm%29)
So,
Pressure = 746 / 760 atm = 0.9816 atm
Temperature = 27 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (27 + 273.15) K = 300.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9816 atm × V = 0.9191 mol × 0.0821 L.atm/K.mol × 300.15 K
<u>⇒V = 23.0733 L</u>
Answer:
Explanation:
Part two of Dalton's theory had to be modified after mass spectrometry experiments demonstrated that atoms of the same element can have different masses because the number of neutrons can vary for different isotopes of the same element. ... Scientists have even developed the technology to see the world on an atomic level!
hoped i helped you :)
The chemical formula for the compound strontium sulphide would be SrS.