The tension in the upper rope is determined as 50.53 N.
<h3>Tension in the upper rope</h3>
The tension in the upper rope is calculated as follows;
T(u) = T(d)+ mg
where;
- T(u) is tension in upper rope
- T(d) is tension in lower rope
T(u) = 12.8 N + 3.85(9.8)
T(u) = 50.53 N
Thus, the tension in the upper rope is determined as 50.53 N.
Learn more about tension here: brainly.com/question/918617
#SPJ1
Answer:
<h3> 3.057m</h3>
Explanation:
According to law of gravitation;
F = GMm/d²
G is the universal gravitation
M and m are the masses
d is the distance between the masses
d² = GMm/F
d² = 6.67408 × 10-11 *3000*7000/0.0015
d² = 140.15568*10^-5/0.0015
d² = 1.4016*10^-3/0.0015
d² = 1.4016*10^-3/1.5*10^-3
d² = 0.9344*10
d² = 9.344
d = √9.344
d = 3.057m
Hence the distance between the two objects is 3.057m
Answer: 20.4752789138x x 10^23 atoms
To count how many atoms in moles you need to know Avogadro's number. Avogadro's number dictate that for every mole there is 6.022140857 × 10^23 molecule/atoms.
Then 3.4 moles of helium will be 3.4x 6.022140857 x 10^23 atoms= 20.4752789138x x 10^23 atoms
The standard wave format for any wave is transverse wave
The acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².
<h3>How to calculate acceleration?</h3>
The acceleration of a freight train can be calculated using the following formula:
Force = mass × acceleration
According to this question, a 600,000kg freight train can produce 100,000N of force. The acceleration is as follows:
100,000 = 600,000 × a
100,000 = 600,000a
a = 0.167m/s²
Therefore, the acceleration of a 600,000 kg freight train, if each of its three engines can provide 100,000N of force is 0.167m/s².
Learn more about acceleration at: brainly.com/question/12550364
#SPJ1