Answer:
v=u+at is the first equation of motion. In this v=u+at equation, u is initial velocity.
A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.
Hello!

Use the equation:

Where:
m = mass of the object (kg)
g = acceleration due to gravity (≈9.8 m/s)
h = height above ground (m)
Plug the given values into the equation:
PE = 7500 · 9.8 · 100
PE = 7,350,000 Joules.
The law<span> of conservation of mass applies in all </span><span>chemical equations</span>