<span>The water is held behind a dam, forming reservoir. The force of the water being released from the reservoir through the dam spins the blades of a giant turbine.</span>
Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
Answer:

Explanation:
Given:
- Three identical charges q.
- Two charges on x - axis separated by distance a about origin
- One on y-axis
- All three charges are vertices
Find:
- Find an expression for the electric field at points on the y-axis above the uppermost charge.
- Show that the working reduces to point charge when y >> a.
Solution
- Take a variable distance y above the top most charge.
- Then compute the distance from charges on the axis to the variable distance y:

- Then compute the angle that Force makes with the y axis:
cos(Q) = sqrt(3)*a / 2*r
- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:
F_1,2 = 2*F_x*cos(Q)
- The total net force would be:
F_net = F_1,2 + kq / y^2
- Hence,

- Now for the limit y >>a:

- Insert limit i.e a/y = 0

Hence the Electric Field is off a point charge of magnitude 3q.
The question is looking for "ellipse" and "two" to fill in the blanks.
The conversion factor you use is 100 cm = 1 m.
You can divide 20 by 100 to get the answer.
20 cm/100 cm =.2 m
Hope this helped!