Answer:
Intensity, 
Explanation:
Power of the light bulb, P = 40 W
Distance from screen, r = 1.7 m
Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :




So, the intensity of light is
.
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
A. 10 N
Explanation:
the weight of melon is 1×10=10N
Explanation:
Mass of the ball, m = 0.058 kg
Initial speed of the ball, u = 11 m/s
Final speed of the ball, v = -11 m/s (negative as it rebounds)
Time, t = 2.1 s
(a) Let F is the average force exerted on the wall. It is given by :


F = 0.607 N
(b) Area of wall, 
Let P is the average pressure on that area. It is given by :


P = 0.202 Pa
Hence, this is the required solution.