<h3>
Answer: True</h3>
For example, a very dense metal will sink to the bottom while something like wood will float on the surface. The wood is less dense compared to the water, which is why it floats. Density is the measure of how much stuff you can pack in a certain volume. The higher the density, the more stuff per volume. Think of it like packing a suitcase. If there's barely anything in there, then we can say its density is low. The more stuff crammed in the suitcase will increase the density (and therefore the weight), while keeping the volume the same.
You sure wouldn't want something like cm/s or (yikes cm/hr). You want a reasonable number for sports usually between 0 and 100
Km / hour would be a good choice.
The next town to where I live is 25 km away. On a good day, I can make it there in about 3/4 of an hour.
Speed = 25 km / 0.75 hour = 33.3 km/hour. That's actually a little fast most of the time. But you should understand what I mean.
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
Full moon: All of the moon or sun appears covers by the shadow.
When the moon is waxing, it means that the lit part is getting larger (going towards a full moon)
When the moon is waning , it means that the lit part is getting smaller (going towards a new moon)
The new moon represents the start of a new lunar cycle and occurs approximately every 29 days.
Hope that help:)
Answer:
a. a=33.34ms⁻², V=164.4m/s
Explanation:
Since the dragster started with zero velocity, de determine the acceleration using of the equations of motion.
Below are the data given
Distance, s=404.5m,
time taken,t=4.922secs
Using the equation
S=ut+1/2at²
where u is the initial velocity and u=0
Making the acceleration the subject of the formula, we arrive at
a=2s/t²
a=(2*404.5)/4.922²
a=33.34ms⁻².
To determine the velocity, we use
V=u+at
V=0+33.34ms⁻² *4.922sec
V=164.4m/s