Well they could go down a hill to gain more kinetic energy.
Here, we are required to find the relationship between balls of different mass(a measure of weight) and different volumes.
- 1. Ball A will have the greater density
- 2. Ball C and Ball D have the same density.
- 3. Ball Q will have the greater density.
- 4. Ball X and Y will have the same density
The density of an object is given as its mass per unit volume of the object.
Mathematically;.
For Case 1:
- Va = Vb and Ma = 2Mb
- D(b) = (Mb)/(Vb) and D(a) = 2(Mb)/Vb
- Therefore, the density of ball A,
- D(a) = 2D(b).
- Therefore, ball A has the greater density.
For Case 2:
- D(c) = (Mc)/(Vc) and D(d) = (1/3)Md/(1/3)Vd
- Therefore, ball C and D have the same density
For Case 3:
- Vp = 2Vq and Mp = Mq
- D(p) = (Mq)/2(Vq) and D(q) = (Mq)/Vq
- Therefore, the density of ball P is half the density of ball Q
- Therefore, ball Q has the greater density.
For case 4:
Therefore, Ball X and Ball Y have the same density.
Read more:
brainly.com/question/18110802
Answer:
A. There are multiple paths that electrons can take through the circuit, and it is possible for the electron to pass through one circuit component but not another.
Explanation:
Parallel arrangement of components in an electric circuit puts different parts of the circuit on different branches. In a parallel connection, there are multiple paths for the electrons to take, and it is possible for electrons to pass through on circuit component without going through another. This is the reason why If there is a break in one branch of the circuit, electrons can still flow in other branches, and the same reason why one bulb going off in your home does prevent the other components in your home from coming on (your home is wired in a parallel electric circuit).
Answer:
b
Explanation:
I'm not so sure but it makes sense