1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
9

An Olympian swims at a rate of 10.8 Km/h. How far will he travel after 0.3 hours?

Physics
1 answer:
zalisa [80]3 years ago
6 0

Answer:

C. 3.2km

Explanation:

Seeing as the swimmer travels 10.8 km in an hour, and they are asking you to find how far they have traveled after 0.3 hours, multiply 10.8 km/h by 0.3 h. The h's will cancel and you are left with 3.24km, which can be rounded to 3.2km. Hope this helps! :)

You might be interested in
How does hydroelectric energy work
lions [1.4K]
<span>The water is held behind a dam, forming reservoir. The force of the water being released from the reservoir through the dam spins the blades of a giant turbine.</span>
6 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
2. Tomas is hanging from a tree limb, that is inclined at a 65° angle. The force
LUCKY_DIMON [66]

Answer:

57 N

Explanation:

Were are told that the force

of gravity on Tomas is 57 N.

And it acts at an inclined angle of 65°

Thus;

The vertical component of the velocity is; F_y = 57 sin 65

While the horizontal component is;

F_x = 57 cos 65

Thus;

F_y = 51.66 N

F_x = 24.09 N

The net force will be;

F_net = √((F_y)² + (F_x)²)

F_net = √(51.66² + 24.09²)

F_net = √3249.0837

F_net = 57 N

4 0
3 years ago
Find the distance in nm between two slits that produces the first minimum for 410-nm violet light at an angle of 14.5°.
Galina-37 [17]

Answer:

820 nm

Explanation:

We are given that

Wavelength=\lambda=410 nm

\lambda=410\times 10^{-9} m

1nm=10^{-9} m

\theta=14.5^{\circ}

For first minimum therefore

m=0

We know that for destructive interference

(m+\frac{1}{2})\lambda=dsin\theta

Substitute the values

(0+\frac{1}{2})\times 410\times 10^{-9}=dsin 14.5

d=\frac{410\times 10^{-9}}{2\times sin 14.5}

d=820\times 10^{-9} m=820 nm

Hence, the distance between two slits that produces the first minimum=820 nm

5 0
3 years ago
Read 2 more answers
The magnetic field produced by a long straight current-carrying wire is
alexdok [17]

Answer:

proportional to the current in the wire and inversely proportional to the distance from the wire.

Explanation:

The magnetic field produced by a long, straight current-carrying wire is given by:

B=\frac{\mu_0 I}{2 \pi r}

where

\mu_0 is the vacuum permeability

I is the current intensity in the wire

r is the distance from the wire

From the formula, we notice that:

- The magnitude of the magnetic field is directly proportional to I, the current

- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r

Therefore, correct option is

proportional to the current in the wire and inversely proportional to the distance from the wire.

8 0
3 years ago
Other questions:
  • Which scientist first made a model of the atom called the plum pudding model?
    8·1 answer
  • How to divide electrons into energy levels?
    15·1 answer
  • Which explains how winds move?
    13·1 answer
  • Heat engines use heat to do work. true or false.
    15·2 answers
  • Brainliest and 100 POINTS
    7·2 answers
  • Suppose two comets, comet A and comet B, were orbiting the sun, having the same average orbital radii. If comet A had a higher o
    7·1 answer
  • The Mandalorian tells baby Yoda (Grogu) to put on his seatbelt in his ship the Razor Crest. Explain why is it a good idea to hav
    7·2 answers
  • If B vectos, is added A vectos under a what
    13·1 answer
  • What is fundamental quantity?​
    11·2 answers
  • 3. What is the acceleration of a car at rest that stays at rest over 10 seconds?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!