Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.
The ball accelerates because of gravity.
Quantum Theory is commonly related to Quantum Mechanics, or the physics of sub-atomic particles. Quantum Theory defines the theories or educated ideas behind Quantum Mechanics. I believe this is the answer you are looking for.
U=10 m/s
v=30 m/s
t=6 sec
therefore, a=(v-u)/t
=(30-10)/6
=(10/3) ms^-2
now, displacement=ut+0.5*a*t^2
=60+ 0.5*(10/3)*36
=120 m
And you can solve it in another way:
v^2=u^2+2as
or, s=(v^2-u^2)/2a
=(900-100)/6.6666666.......
=120 m