Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms
Answer: 25.38 m/s
Explanation:
We have a straight line where the car travels a total distance
, which is divided into two segments
:
(1)
Where 
On the other hand, we know speed is defined as:
(2)
Where
is the time, which can be isolated from (2):
(3)
Now, for the first segment
the car has a speed
, using equation (3):
(4)
(5)
(6) This is the time it takes to travel the first segment
For the second segment
the car has a speed
, hence:
(7)
(8)
(9) This is the time it takes to travel the secons segment
Having these values we can calculate the car's average speed
:
(10)
(11)
Finally:
Hope this helps. If you need clarification just ask me!
I'm pretty sure the answer would be D
The current intensity is defined as the amount of charge flowing through a certain point of a wire divided by the time interval:

where Q is the charge and

is the time. Re-arranging the formula, we have

for the compressor in our problem, the intensity of current is I=66.1 A, while the time is

, so the amount of charge that crosses a certain point of the circuit during this time is