In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J
113,000 Joules of heat energy are required.
Larger molecules will move slower and smaller molecules will move faster. Did this answer your question?
Heres your great lovley answer that you need
Answer:

Explanation:
<u>Sum of Vectors in the Plane</u>
Given two vectors

They can be expressed in their rectangular components as


The sum of both vectors can be done by adding individually its components

If the vectors are given as a magnitude and an angle
, each component can be found as


The first vector has a magnitude of 3.14 m and an angle of 30°, so


The second vector has a magnitude of 2.71 m and an angle of -60°, so


The sum of the vectors is


Finally, we compute the magnitude of the sum



The answer you are looking for would be C. "She asks her lab partner which base he thinks is hardest to study"
This is the correct option out of the other choices.
A. She uses a acid-base indicator to measure the pH of four different solutions
B. She mixes two solutions and measures their pH before and after
C. She asks her lab partner which base he thinks is the hardest to study
D. She measures the temperature of a solution before and after adding H2SO4