Lines of Force around an Electromagnet. ... The magnetic field strength of an electromagnet is therefore determined by the ampere turns of the coil with the more turns of wire in the coil the greater will be the strength of the magnetic field.
Answer:
I think it’s the third one
Answer:
.737 v
Explanation:
Since they are in series....they all have the same current running through them.....find the total resistance to calculate the current:
R = 67 + 83 + 433 + 309 = 892 ohm
V/R = current = 7.92 / 892 = 8.87 mAmps
Now the voltage across ecah resistor is I R
for the second one 8.87 ma * 83 ohm = V = .737 V
Answer:
![\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)
Explanation:
The electric field created by an infinitely long wire can be found by Gauss' Law.

For the electric field at point (x,y), the superposition of electric fields created by both lines should be calculated. The distance 'r' for the first wire is equal to 'y', and equal to 'x' for the second wire.
![\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) + \frac{-\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0 y}(\^y) - \frac{\lambda}{2\pi\epsilon_0 x}(\^x)\\\vec{E} = \frac{\lambda}{2\pi\epsilon_0}[\frac{1}{y}(\^y) - \frac{1}{x}(\^x)]](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%20%3D%20%5Cvec%7BE%7D_1%20%2B%20%5Cvec%7BE%7D_2%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20%2B%20%5Cfrac%7B-%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20y%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%20x%7D%28%5C%5Ex%29%5C%5C%5Cvec%7BE%7D%20%3D%20%5Cfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_0%7D%5B%5Cfrac%7B1%7D%7By%7D%28%5C%5Ey%29%20-%20%5Cfrac%7B1%7D%7Bx%7D%28%5C%5Ex%29%5D)