H2O is the correct answer :)
Answer:
we will use the Clausius-Clapeyron equation to estimate the vapour pressures of the boiling ethanol at sea level pressure of 760mmHg:
ln (P2/P1) =
-
)
where
P1 and P2 are the vapour pressures at temperatures T1 and T2
Δ
vapH = the enthalpy of vaporization of the ETHANOL
R = the Universal Gas Constant
In this problem,
P
1
=
100 mmHg
; T
1
=
34.7 °C
=
307.07 K
P
2
=
760mmHg
T
2
=T⁻²=?
Δ
vap
H
=
38.6 kJ/mol
R
=
0.008314 kJ⋅K
-1
mol
-1
ln
(
760/10)=(0.00325 - T⁻²) (38.6kJ⋅mol-1
/0.008314
)
0.0004368=(0.00325 - T⁻²)
T⁻²=0.002813
T² = 355.47K
Answer:
7
8
9
10.
better check book pages for this kinda answer.
Answer:
Depending on the thermometer, it may have the ability to go as high or low as melting, freezing or boiling point for water. Just make sure you know the boiling, melting and freezing points in Celsius, Fahrenheit and/or Kelvin and read your thermometer accordingly.
Explanation: