Burning splint test
2H2 (g) + O2 (g) -> 2H20 (g) + heat
It’s a combustion reaction
<span>As we know that
1 cu cm H2O = 1 mL H2O = 1g H2O
now
Heat of fusion of water = 79.8 cal/g
and
Heat of vaporization of water = 540 cal/g
Atomic weight of water : H=1 O=16 H2O=18
now by calculating and putting values
65.5gH2O x 79.8cal/gH2O x 1gH2O/540cal = 9.68g H2O (steam)
9.68gH2O x 1molH2O/18gH2O x 22.4LH2O/1molH2O = 12.0 L H2O
hope it helps</span>
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
5 Valence electrons .......... Hope it helps, Have a nice day:)