Answer:
<em>No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.</em>
Explanation:
If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)
For a body under this type of equilibrium,
ΣF = 0 ...1
where ΣF is the resultant force (total effective force due to all the forces acting on the body)
For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as
ΣF = ma ...2
where m is the mass of the body
a is the acceleration of the body
Substituting equation 2 into equation 1, we have
0 = ma
therefore,
a = 0
this means that<em> if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.</em>
<em></em>
Answer:
c) a tube light
Explanation:
a solar panel converts light energy into electricity
a tube light converts electricity into light
Best Answer: perpendicular to the direction of wave motion
think of you and a friend holding different ends of a rope. you shake your end side to side and the wave travels down to your friend's end. if you pay attention to a given segment of the rope, it moves, but it moves to the right and left while the wave travels forward. in a transverse wave, the constituents of the wave move perpendicular to the direction of motion of the wave itself.
a longitudinal wave, on the other hand, is the opposite. the constituents of the wave alternate moving in the same or opposite direction as the wave moves. this one is more like if you and your friend were holding onto a slinky. you give your end a push towards your friend, and you can see the wave move towards the other end.
hope that helps :D
Answer:
I font now but I think its 2.0 + 78 w -60
The spring should have a greater displacement .
Greater spring constant = the more difficult it is to stretch a spring , due to stiffness.