First, let's express the movement of Car A and B in terms of their position over time (relative to car B)
For car A: y=20x-200 Car A moves 20 meters every second x, and starts 200 meters behind car B
For Car B: y= 15x Car B moves 15 meters every second and starts at our basis point
Set the two equations equal to one another to find the time x at which they meet:
20x - 200 = 15x
200 = 5x
x= 40
At time x=40 seconds, the cars meet. How far will Car A have traveled at this time?
Car A moves 20 meters every second:
20 x 40 = 800 meters
Answer:
The magnitude is "3.8 m/s²", in the upward direction.
Explanation:
The given values are:
Mass,
m = 88 kg
Scale reads,
T = 900 N
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Now,
⇒ 
On substituting the given values in the above equation, we get
⇒ 
On subtracting "862.4" from both sides, we get
⇒ 
⇒ 
⇒ 
⇒
(upward direction)
Answer:
The dose is 6 mSV
Explanation:
The absorbed dose (in gray - Gy) is the amount of energy that ionizing radiation deposits per unit mass of tissue. That is,
Absorbed dose = Energy deposited / Mass
while Dose equivalent (DE) (in Seivert -Sv) is given by
DE = Absorbed dose × RBE (Relative biological effectiveness)
First, we will determine the Absorbed dose
From the question, Energy deposited = 30mJ and Mass = 50kg
From,
Absorbed dose = Energy deposited / Mass
Absorbed dose = 30mJ/50kg
Absorbed dose = 0.6 mGy
Now, for the Dose equivalent (DE)
DE = Absorbed dose × RBE
From the question, RBE = 10
Hence,
DE = 0.6mGy × 10
DE = 6 mSv
I believe the correct answer is B.<span>positively charged hair.</span>