In terms of an equation, the momentum of an object is equal to the mass of the object times the velocity of the object. where m is the mass and v is the velocity. The equation<span> illustrates that momentum is directly </span>proportional<span> to an object's mass and directly </span>proportional<span> to the object's velocity.</span>
The correct answer is Raoul Hausmann. He was an Austrian
artist and writer. And he was a forefather and dominant figure of the Dada movement
in Berlin, who was
known particularly for his ironic photomontages and
his provocative writing on art. One of the important
figures there also includes the experimental photographic collages, sound
poetry and institutional reviews that has a profound influence on the European
Avant-Garde in the aftereffects of World War I.
Answer:
ω = 0.571 rad/s
Explanation:
given data
radius = 30 m
solution
we take here g = 9.8 m/s²
and g is express as
g = r × ω² ....................1
put here value and we get
9.8 = 30 × ω²
solve it we get
ω = 0.571 rad/s
Answer:
W_apparent = 93.1 kg
Explanation:
The apparent weight of a body is the weight due to the gravitational attraction minus the thrust due to the fluid where it will be found.
W_apparent = W - B
The push is given by the expression of Archimeas
B = ρ_fluide g V
ρ_al = m / V
m = ρ_al V
we substitute
W_apparent = ρ_al V g - ρ_fluide g V
W_apparent = g V (ρ_al - ρ_fluide)
we calculate
W_apparent = 980 50 (2.7 - 0.8)
W_apparent = 93100 g
W_apparent = 93.1 kg
Answer:
pleading
Explanation:
the first step in a lawsuit where parties pass their claims and their defenses. the plaintiff or the one complaining states the issue while the defendant states his answer on the complain and his defense