Answer:
19.2m/s
Explanation:
Assuming that 2.4m/s^2 was the acceleration and not a typo, we can use the equation v=at, where v=velocity, a=acceleration, and t=time,
plug in known varibles,
v=2.4*8
v=19.2m/s
Answer:Explanation:gfgfgfgfgfgfgfgfgfg
during satellite motion we know that total energy is always conserved
so here we will have

here we know that


now at other position

now from above equation we have

now we have


so its kinetic energy will be 3500 MJ
We are given the following:
Bobo's swimming speed = 2.0 m/s
Width of the river = 100 m
Flowrate of the river = 6.0 m/s due east
First, we need to illustrate the problem. Draw the river with a width of 100 meters. Then, the flow of the river, east at 6 meters per second. Lastly, draw Bobo at one side of the river facing north and an arrow representing swimming speed at 2 meters per second.
Now, we can use the Pythagorean theorem to solve this rate problem.
c^2 = a^2 + b^2
c = speed of Bobo needed
a = speed of Bobo facing north
b = flow rate of the river going east
c^2 = 2^2 + 6^2
c = 6.32 m / s should be his speed to overcome the current and make a landing at the desired location.