Answer:
Part a)
Part b)
Part c)
Speed is more than the required speed so it will reach the top
Explanation:
Part a)
As we know that there is no frictional force while block is moving on horizontal plane
so we can use energy conservation on the block
Part b)
If the track has average frictional force of 7 N then work done by friction while block slides up is given as
work done against gravity is given as
Now by work energy equation we have
Part c)
now minimum speed required at the top is such that the normal force must be zero
so here we got speed more than the required speed so it will reach the top
Answer:
When magnesium reacts with oxygen, it produces light bright enough to blind you temporarily. Magnesium burns so bright because the reaction releases a lot of heat. As a result of this exothermic reaction, magnesium gives two electrons to oxygen, forming powdery magnesium oxide (MgO).
Answer:
Explanation:
This question is based on the Law of Conservation of Angular Momentum.
Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).
L = Iω
If momentum is conserved,
I₁ω₁ = I₂ω₂
Data:
I₁ = 3.5 kg·m²s⁻¹
ω₁ = 6.0 rev·s⁻¹
I₂ = 0.70 kg·m²s⁻¹
Calculation:
Answer:
it will show a continuous rise in value. The rise will be sinusoidal.
Explanation:
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).