Answer:
A) for leftmost point the coordinate is -0.28m that means it should be 0.28m towards the right.
B) for rightmost case the coordinate is 0.28m which is where komila should sit.
Explanation:
Detailed calculation and explanation is shown in the image below
Answer:
D. If a home were wired in series, every light and appliance would have to be turned on in order for any light or appliance to work.
Explanation:
In a series circuit, all the appliances are connected on the same branch of the circuit, one after the other. This means that the current flowing throught them is the same. However, this means also that if one of the appliance is turned off (so, its switch is open), that appliance breaks the circuit, so the current can no longer flow through the other appliances either.
On the contrary, when the appliances are connected in parallel, they are connected in different branches, so if one of them is switched off, the other branches continue working unaffacted by it.
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Molecular mass may be calculated by taking the atomic mass of each element present and multiplying it by the number of atoms of that element in the molecular formula. Then, the number of atoms of each element is added together. This value may be reported as a decimal number or as 16.043 Da or 16.043 amu.