1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
6

A fluid is flowing through a circulat tube at 0.4 kg/s. Tube inner surface is smooth with a diameter 0.014 m. Fluid density is 9

90 kg/m^3, specific heat is 3,845 J/(kg-K), viscosity is 0.00079 Ns/m^2, thermal conductivity is 0.74, and Prandtl number is 8.6. A uniform heat flux of 71,297 W/m^2 is supplied to the flow from the surface. If the flow is fully developed, what is the convection coefficient in W/(m^2-K)
Physics
1 answer:
ElenaW [278]3 years ago
7 0

Answer:

The convection coefficient is 15456.48\ W/m^{2}K

Solution:

Mass flow rate, \dot{m} = 0.4\ kg

Inner diameter of the tube, d = 0.014 m

Fluid density, \rho_{f} = 990\ kg/m^{3}

Specific Heat, C = 3845 J/K

Thermal Conductivity, K = 0.74

Prandtl Number, P_{r} = 8.6

Heat flux, \dot{q} = 71,297\ W/m^{2}

Viscosity, \mu = 0.00079\ Ns/m^{2}

Now,

To calculate the convection heat coefficient, h:

Determine the cross sectional area of the circular tube:

A_{c} = \frac{\pi}{4}d^{2} = \frac{\pi}{4}\times (0.014)^{2} = 1.54\time 10^{- 4}\ m^{2}

Determine the velocity of the fluid inside the tube by mass flow rate:

\dot{m} = \rho_{f}A_{c}v

0.4 = 990\times 1.54\time 10^{- 4}v

v = 2.624 m/s

Determine the Reynold's Number, R_{e}:

R_{e} = \frac{\rho_{f}dv}{\mu}

R_{e} = \frac{990\times 0.014\times 2.624}{0.00079} = 46036.253

Thus it is clear that R_{e} > 10,000 hence flow is turbulent.

Now,

Determine the Nusselt Number:

N_{u} = 0.023R_{e}^{0.8}P_{r}^{0.4}

N_{u} = 0.023\times 46036.253^{0.8}\times 8.6^{0.4} = 292.42

Also,

N_{u} = \frac{dh}{K}

where

h = convection coefficient

Now,

292.42 = \frac{0.014\times h}{0.74}

h = 15456.48\ W/m^{2}K

You might be interested in
What environments does tornado not occur in?
Nadusha1986 [10]
The winter I think would be the answer
5 0
2 years ago
Read 2 more answers
The third floor of a house is 8m above street level. How much work is needed to move a 136kg refrigerator to the third floor?
jonny [76]

m = Mass of the refrigerator to be moved to third floor = 136 kg

g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²

h = Height to which the refrigerator is moved  = 8 m

W = Work done in lifting the object

Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence

Work done = Gravitation potential energy of refrigerator

W = m g h

inserting the values

W = (136) (9.8) (8)

W = 10662.4 J



8 0
2 years ago
A solid cylinder is released from the top of an inclined plane of height 0.81 m. From what height, in meters, on the incline sho
Jlenok [28]

Answer:

same 0.81m

Explanation:

in this problem if we assume there no resistance of any sort. and we apply the energy conservation

change in Potential energy = change in kinetic energy

mgh = 0.5mv^2

gh = 0.5v^2

the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.

so at the bottom

put h = 0.81m

9.81 * 0.81 * 2 = v^2

v=3.99 m/s

both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size

3 0
3 years ago
Select the correct answer.
Natali [406]

its b hoped i helped

8 0
3 years ago
Read 2 more answers
An amateur player is about to throw a dart with an initial velocity of 15 meters/second onto a dartboard that is at a distance o
Minchanka [31]

Answer:

B. 0.16 m

Explanation:

The vertical distance by which the player will miss the target is equal to the vertical distance covered by the dart during its motion.

Since the dart is thrown horizontally, the initial vertical velocity is zero:

v_y = 0

While the horizontal velocity is

v_x = 15 m/s

The horizontal distance covered is

d_x = 2.7 m

Since the dart moves by uniform motion along the horizontal direction, the time it takes for covering this distance is

t=\frac{d_x}{v_x}=\frac{2.7 m}{15 m/s}=0.18 s

along the vertical direction, the motion is a uniformly accelerated motion with constant downward acceleration g=9.8 m/s^2, so the vertical distance covered is given by

d_y = \frac{1}{2}gt^2=\frac{1}{2}(9.8 m/s^)(0.18 s)^2=0.16 m

8 0
3 years ago
Other questions:
  • Combine these three velocity vectors into a resultant: 3.0 m/s north, 4.0 m/s east 1.0 m/s west. Identify the resultant vector
    5·1 answer
  • What makes it possible for us to see the moon from earth?
    12·1 answer
  • i need to know The Sun and Moon seem to move across the sky each day because of Earth's ____________________ on its axis. The Mo
    10·1 answer
  • Plz help
    14·2 answers
  • (a) If a flea can jump straight up to a height of 0.440 m, what is its initial speed as it leaves the ground? (b) How long is it
    12·1 answer
  • A graph of velocity versus time (velocity displayed in m/s and time in seconds) displays a
    6·1 answer
  • Because of convection, the warmest air in a room
    11·1 answer
  • Differences between looping and simersaulting​
    8·1 answer
  • HELPPPPPPPPPPP
    8·1 answer
  • When a new path of lesser resistance is made for an existing circuit a(n) _____________ circuit occurs.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!