In order to determine this, we will first need some conversions. We will need to convert metric tons and grams into one another and also cubic centimeters to cubic meters into one another.
1 metric ton = 1000 kg
1 kg = 1000 grams
1 metric ton = 10⁶ grams
So 10⁶ grams / metric ton
1 meter = 100 cm
1 m³ = (100)³ cm³
1 m³ = 10⁶ cm³
So 10⁶ cm⁶ / m³
Now, we manipulate the given value:
(19.3 grams / cm³) * (1 metric ton / 10⁶ grams) * (10⁶ cm³ / m³)
= 19.3 metric tons / m³
The density of gold is 19.3 metric tons meter meter cubed.
Answer:
The volume of water that was in the kettle is 1170 
Explanation:
Given:
Power, P = 2.0 kW = 2000 W, Mass of stainless steel,
= 710 g = 0.71 kg at temperature of 
Part A:
If it takes time, t = 3.5 minutes to reach boiling point of water
, then from conservation of energy,
Total energy supplied by the burner = Total heat gained by the water and the stainless steel to rise from
to 
i.e. Pt = 
(100 - 20 ) + 
(100 - 20 )
=
= 1.17 kg
where
= 4200 J/Kgk (specific heat capacity of water),
= 450 J/Kgk (specific heat capacity of steel)
But volume of water in the the kettle, v =
∴ v = 1170 
Answer:
Electromagnetic radiation is made when an atom absorbs energy. The absorbed energy causes one or more electrons to change their locale within the atom. When the electron returns to its original position, an electromagnetic wave is produced. ... These electrons in these atoms are then in a high energy state.
Explanation:
Answer:
The value of leaking rate in the question is repeated. By searching on the web I could find the correct value wich is 0.002h^2 m^3 /min.
The depth of the water has to be equal to 7.07 m in order to have a stationary volume.
Explanation:
In order to have a stationary water level the flow of water that comes into the tank (0.1 m^3/min) must be equal to the flow of water that goes out of the tank (0.002*h^2 m^3/min), therefore:
0.002*h^2 = 0.1
h^2 = 0.1/0.002
h^2 = 50
h = sqrt(50) = 7.07 m