Answer: Ribosomes are the site of protein synthesis, and they convert the coded information in messenger RNA into an actual protein molecule.
I hope this helped! OvO
Answer:
Explanation:
Distance between plates d = 2 x 10⁻³m
Potential diff applied = 5 x 10³ V
Electric field = Potential diff applied / d
= 5 x 10³ / 2 x 10⁻³
= 2.5 x 10⁶ V/m
This is less than breakdown strength for air 3.0×10⁶ V/m
b ) Let the plates be at a separation of d .so
5 x 10³ / d = 3.0×10⁶ ( break down voltage )
d = 5 x 10³ / 3.0×10⁶
= 1.67 x 10⁻³ m
= 1.67 mm.
Answer:
h f = W + KE
Input energy equals work function plus KE of emitted electron
W = 6.63E-34 * 2.5E15 - 6.3 * 1.6E-19
W = 6.63 * 2.5 * 10^-19 - 10.1 * E-19 ev (1ev = 1.6E-19 J)
W = (16.6 - 10.1)E-19 = 6.5E-19 J
h f = 6.5E-19 J for electrons to be emitted with zero KE
f = 6.5E-19 / 6.63E-34 = .98E-15 / sec = 9.8E-14 / sec (threshold)
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s