Newton’s first law states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it.
Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction. The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion.
-------------------------------------------------------------------------------------------------------------
The first law represented in the game would be the candy. If you blow it, it would move but then stop due to friction.
The second law would be represented by blowing the candy. Since the candy was light, it would be easier to blow but if it was heavier, it would be a lot harder.
The final law represented in the game would be if you decided to blow the candy with a ballon instead, the candy would move the opposite direction the ballon is moving.
Answer:
heueiehhe8ehh38ehgeyegdhowgw8ehieerr
<h3><u>Answer;</u></h3>
A. Skeletal muscles, which are made of fibers, nerves, and blood vessels, contract in order to make the body move.
<h3><u>Explanation</u>;</h3>
- <em><u>Muscular tissues functions in movement and locomotion through its direct connection with the skeletal system. </u></em>
- <em><u>Skeletal muscles are responsible for moving the body. The skeletal muscle contractions pull on tendons, which as attached to bones. When the skeletal muscle contraction causes the muscle to shorten, the bone and thus the body par will move. </u></em>
- <em><u>Skeletal muscles also provide structural support for the entire body. </u></em>
Answer:
The rate of change of distance between the two ships is 18.63 km/h
Explanation:
Given;
distance between the two ships, d = 140 km
speed of ship A = 30 km/h
speed of ship B = 25 km/h
between noon (12 pm) to 4 pm = 4 hours
The displacement of ship A at 4pm = 140 km - (30 km/h x 4h) =
140 km - 120 km = 20 km
(the subtraction is because A is moving away from the initial position and the distance between the two ships is decreasing)
The displacement of ship B at 4pm = 25 km/h x 4h = 100 km
Using Pythagoras theorem, the resultant displacement of the two ships at 4pm is calculated as;
r² = a² + b²
r² = 20² + 100²
r = √10,400
r = 101.98 km
The rate of change of this distance is calculated as;
r² = a² + b²
r = 101.98 km, a = 20 km, b = 100 km
