in this since your volume remains at a constant you'll need to use Gay-Lussacs law, p1/t1=p2/t2.
your temp should be converted in kelvin
variables:
p1=3.0×10^6 n/m^2
t1= 270k
just add 273 to your celcius
p2= ? your solving for this
t2= 315k
then you set up the equation
(3.0×10^6)/270= (x)(315)
you then cross multiply
(3.0×10^6)315=270x
distribute the 315 to the pressure.
9.45×10^8=270x then you divide 270 o both sides to get
answer
3.5×10^6 n/m^2
A globe sitting on the desk can't demonstrate the speed of axial rotation
or the speed of orbital revolution.
Explanation:
Constellation: The complete sky has been divided in 88 different areas, in a way we have divided Earth in countries, not necessarily having same shapes and size. These 88 areas are known as constellations. These contains a lot of stars. When we join the brightest stars together we can imagine a shape out of them which is called as Asterism. Most of the people are unaware of this difference. Some of the famous constellations are Orion, Taurus, Gemini, Hydra, Ursa Major etc.
When an astronomer says that there is a comet is in the Orion, he means that a comet is in the boundaries of Orion constellation.
Planck find the correct curve for the specturm of light emitted by a hot object by vibrational energies of the atomic resonators were quantized.
<h3>Briefing :</h3>
- The energy density of a black body between λ and λ + dλ is the energy E=hc/λ of a mode times the density of states for photons, times the probability that the mode is occupied.
- This is Planck's renowned equation for a black body's energy density.
- According to this, electromagnetic radiation from heated bodies emits in discrete energy units or quanta, the size of which depends on a fundamental physical constant (Planck's constant). The basis of infrared imaging is the correlation between spectral emissivity, temperature, and radiant energy, which is made possible by Planck's equation.
Learn more about the Planck's constant with the help of the given link:
brainly.com/question/27389304
#SPJ4