Hypothesis - I predict that the orchids will grow best with a medium concentration of fertilizer
Answer:

Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
Given: Kc = 0.50
Temperature = ![400^oC=[400+273]K=673K](https://tex.z-dn.net/?f=400%5EoC%3D%5B400%2B273%5DK%3D673K)
R = 0.082057 L atm.mol⁻¹K⁻¹
Δn = (2)-(3+1) = -2
Thus, Kp is:

Explanation:
Filtration is a separation technique in which solid particles suspended in liquid medium are separated by allowing the mixture through the pores of the filter paper. By this solid particles get collect on filter paper and liquid drains out from the pores of the filter paper.
The chronological order for given steps will be:
- Weigh and fold the filter paper.
- Place the filter paper in the funnel, then place the funnel in the Erlenmeyer flask.
- Allow the solid/liquid mixture to drain through the filter.
- Use water to rinse the filter paper containing the mixture.
- Weigh the dried filter paper and copper.
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:
