Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer:
Answer:
7.4 cm
Explanation:
K = 2.17 x 10^3 N/m
m = 4.71 kg
v = 1.78 m/s (It is maximum velocity)
The angular velocity


ω = 24 rad/s
Maximum velocity, v = ω x A
Where, A be the maximum displacement
1.78 = 24 x A
A = 0.074 m = 7.4 cm
The answer is; D
The friction causes the ice at the base of the avalanche to melt into water (also due to the pressure of the weight of the ice-rock above). The melted water acts as a lubricant hence reducing the drag/friction in the avalanche movement. This increases its speed down the slope hence making it more destructive.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The current is 
Explanation:
From the question we are told that
The voltage of battery is 
The capacitance of capacitor is 
The resistance of the resistor is 
Generally the current at the instant the capacitor starts charging is

substituting values

