Answer:
Vol of 4 moles CO₂(g) at STP = 89.6 Liters
Explanation:
STP
P = 1 Atm
V =
T = 0°C = 273 K
n = 4 moles
R = 0.08206 L·Atm/mol·K
Using Ideal Gas Law PV = nRT => V = nRT/P
V = (4 moles)(0.08206 L·Atm/mol·K)(273 K)/(1 Atm) = 89.6 Liters
Answer is: dipole-induced dipole interactions.
Intermolecular forces are the forces between molecules or particles.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces and van der Waals forces.
A dipole-induced dipole interaction is a weak attraction that results when a polar molecule induces a dipole in a nonpolar molecule by disturbing the arrangement of electrons in the nonpolar species.
2CH3COOH +Na2CO3 ----> 2CH3COONa + H20 + CO2
know you can find what all products formed from his reaction
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>