Answer: N has to be lesser than or equal to 1666.
Explanation:
Cost of parts N in FPGA = $15N
Cost of parts N in gate array = $3N + $20000
Cost of parts N in standard cell = $1N + $100000
So,
15N < 3N + 20000 lets say this is equation 1
(cost of FPGA lesser than that of gate array)
Also. 15N < 1N + 100000 lets say this is equation 2
(cost of FPGA lesser than that of standardcell)
Now
From equation 1
12N < 20000
N < 1666.67
From equation 2
14N < 100000
N < 7142.85
AT the same time, Both conditions must hold true
So N <= 1666 (Since N has to be an integer)
N has to be lesser than or equal to 1666.
Answer:
is this a question for hoework
Answer:

Explanation:
The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:




The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

The rate of heat transfer in the boiler is:


Answer:
116.3 electrons
Explanation:
Data provided in the question:
Time, t = 2.55 ps = 2.55 × 10⁻¹² s
Current, i = 7.3 μA = 7.3 × 10⁻⁶ A
Now,
we know,
Charge, Q = it
thus,
Q = (7.3 × 10⁻⁶) × (2.55 × 10⁻¹²)
or
Q = 18.615 × 10⁻¹⁸ C
Also,
We know
Charge of 1 electron, q = 1.6 × 10⁻¹⁹ C
Therefore,
Number of electrons past a fixed point = Q ÷ q
= [ 18.615 × 10⁻¹⁸ ] ÷ [ 1.6 × 10⁻¹⁹ ]
= 116.3 electrons