1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
14

If 65 gallons of hydraulic oil weighs 350lb, what is the specific weight of the oil in lb/ft^3?

Engineering
1 answer:
timurjin [86]3 years ago
3 0

Answer:

55.655 lb/ft³

Explanation:

Given data in question

oil weight i.e. w  = 350 lb    

oil volume i.e. v = 65 gallons = 6.68403 ft³

               

To find out

the specific weight of the oil

Solution

We know the specific weight formula is weight / volume    

we have given both value so we will put weight and volume value in

specific weight formula i.e.  

specific weight  =  weight / volume    

specific weight  =  372 / 6.68403 = 55.6550    

specific weight  =  55.655 lb/ft³

You might be interested in
1. advantages of 2 pulley system
n200080 [17]

Answer:

Advantages

The main advantage in the use of pulleys is that the effort becomes less as compared to the normal lifting of the weights. In other words, it reduces the amount of actual force required to lift heavy objects. It also changes the direction of the force applied. These two advantages in the use pulleys make them an important tool for heavy lifting. It also provides a mechanical advantage.

The other advantage in the use of pulleys is that the distance between the operator and weight. There is a safe distance between them which avoids any disaster. Pulleys are easy to assemble and cost-effective. The combination of different directional pulleys can change the position of the load with little effort. Though there are moving parts in the pulley system they require less or no lubrication after installation.

Disadvantages

Apart from the above-said advantages while using pulley systems, there are several disadvantages in their use. The main disadvantage in the use of the pulley system is that it requires large space to install and operate. The mechanical advantage of pulleys can go to higher values but need more space to install them.

In some cases, the ropes/belts move over the wheel with no grooves, the chances of the slip of ropes/belts from the wheel are inevitable. If the system is installed to use for a long time, they require maintenance and regular check-up of ropes/cables as the friction between the wheels and cables/ropes occur causing wear and tear to them. Continuous use of the system makes the ropes weak. The rope may break while using the system causing damages to the operator, surrounding place and the load which is being lifted.

5 0
3 years ago
Two sites are being considered for wind power generation. On the first site, the wind blows steadily at 7 m/s for 3000 hours per
kirill [66]

Solution :

Given :

$V_1 = 7 \ m/s$

Operation time, $T_1$ = 3000 hours per year

$V_2 = 10 \ m/s$

Operation time, $T_2$ = 2000 hours per year

The density, ρ = $1.25 \ kg/m^3$

The wind blows steadily. So, the K.E. = $(0.5 \dot{m} V^2)$

                                                             $= \dot{m} \times 0.5 V^2$

The power generation is the time rate of the kinetic energy which can be calculated as follows:

Power = $\Delta \ \dot{K.E.} = \dot{m} \frac{V^2}{2}$

Regarding that $\dot m \propto V$. Then,

Power $ \propto V^3$ → Power = constant x $V^3$

Since, $\rho_a$ is constant for both the sites and the area is the same as same winf turbine is used.

For the first site,

Power, $P_1= \text{const.} \times V_1^3$

            $P_1 = \text{const.} \times 343 \ W$

For the second site,

Power, $P_2 = \text{const.} \times V_2^3 \ W$

           $P_2 = \text{const.} \times 1000 \ W$

5 0
3 years ago
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
Gas is kept in a 0.1 m diameter cylinder under the weight of a 100 kg piston that is held down by a spring with a stiffness k =
Artyom0805 [142]

Answer:

The spring is compressed by 0.275 meters.

Explanation:

For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of  weight of the piston and the force the spring exerts on the piston

Mathematically we can write

Force_{pressure}=Force_{spring}+Weight_{piston}

we know that

Force_{pressure}=Pressure\times Area=300\times 10^{3}\times \frac{\pi \times 0.1^2}{4}=750\pi Newtons

Weight_{piston}=mass\times g=100\times 9.81=981Newtons

Now the force exerted by an spring compressed by a distance 'x' is given by Force_{spring}=k\cdot x=5\times 10^{3}\times x

Using the above quatities in the above relation we get

5\times 10^{3}\times x+981=750\pi \\\\\therefore x=\frac{750\pi -981}{5\times 10^{3}}=0.275meters

5 0
3 years ago
Describe the three primary duties for engineer
Wewaii [24]

Answer:Prepare plans with detailed drawings that include project specifications and cost estimates.

Design and execute engineering experiments to create workable solutions.

Develop engineering calculations, diagrams and technical reports.

Explanation:

4 0
3 years ago
Other questions:
  • Technician A says that when using an impact wrench to remove a bolt from the front of an engine's crankshaft, the crankshaft mus
    15·1 answer
  • Why do we write proton ions first before electron ions? <br>​
    10·1 answer
  • Two gage marks are placed exactly 250 mm apart on a 12-mm-diameter aluminum rod with E 5 73 GPa and an ultimate strength of 140
    8·1 answer
  • What would be the most likely scale factor to use for an n-gauge model train setup? (An n-gauge layout uses locomotives that are
    8·1 answer
  • An op-amp differential amplifier is built using four identical resistors, each having a tolerance of ±5%. Calculate the worst p
    14·1 answer
  • A spherical metal ball of radius r_0 is heated in an oven to a temperature of T_1 throughout and is then taken out of the oven a
    6·1 answer
  • What the minimum wire size for a general residential application on a 20 A circuit
    7·1 answer
  • What happens if you leave your car on while pumping gas
    8·1 answer
  • A composite plane wall consists of a 5-in.-thick layer of insulation (ks = 0.029 Btu/h*ft*°R) and a 0.75-in.-thick layer of sidi
    11·1 answer
  • You insert a dielectric into an air-filled capacitor. How does this affect the energy stored in the capacitor?.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!