From Avogadro we obtained a physical constant of matter which is Avogadro's number, and from both scientists we understand that elementary gases such as hydrogen, nitrogen, and oxygen were composed of two atoms.
<h3>What is Avogadro's number?</h3>
Avogadro's number, or Avogadro's constant, is the number of particles found in one mole of a substance.
The Avogadro's number is given as 6.02 x 10²³.
Summary of Josef Loschmidt and Amedeo Avogadro Contribution to chemistry.
- Equal volumes of gas contain equal numbers of molecules,
- Elementary gases such as hydrogen, nitrogen, and oxygen were composed of two atoms.
Thus, from Avogadro we obtained a physical constant of matter which is Avogadro's number, and from both scientists we understand that elementary gases such as hydrogen, nitrogen, and oxygen were composed of two atoms.
Learn more about Avogadro's here: brainly.com/question/1581342
#SPJ1
C. or A. Is your best bet
<span>The ideal gas law.
PV=nRT
pressure x volume = moles x Faraday's constant x Temp Kelvin (C+273)
Original data
Pressure 1 atmosphere
Volume 1 liter
Temp 25C = 298K
New data
Volume 0.5 liter
pressure X
Temp 260C = 533K
P1v1T1 = P2v2T2
plug and chug.
(1)(1)(293) = (x)(0.5)(533)
Solve for X, which is the new pressure. </span>
Answer:
-573.67
Explanation:
whenever energy is released in a chemical reaction, we would then expect the delta H of the reaction to be negative because the reaction is an exothermic reaction.
now we have that 2.81 moles of fuel when it combusts would releases 1612kJ of energy
thus, 1 mole will release 1612/2.81 = -573.67kJ of heat
Therefore the delta H of the reaction = -573.67 kJ/mol
Answer: The volume of
required is 25.0 ml
Explanation:
According to the neutralization law,
where,
= basicity
= 1
= molarity of
solution = 2.00 M
= volume of
solution = 50.0 ml
= acidity of
= 1
= molarity of
solution = 4.00 M
= volume of
solution = ?
Putting in the values we get:
Therefore, volume of
required is 25.0 ml