Answer:
B. 3.0 g/ml
Explanation:
density formula: mass/volume
15/5=3
Delta H = q / mass * delta temperature
Thank you for posting your question here brainly. Based on the problem mentioned above the largest mass that water molecule could have using other isotopes is <span>24 amu. Below is the solution, I hope the answers helps.
</span><span>T2_18O = 24</span>
Answer:
The equilibrium will be shifted to lift with the formation of a brown gelatinous precipitate of Fe(OH)₃.
Explanation:
- Le Chatelier's principle states that <em>"when any system at equilibrium for is subjected to change in concentration, temperature, volume, or pressure, then the system readjusts itself to counteract the effect of the applied change and a new equilibrium is established that is different from the old equilibrium"</em>.
- The addition of NaOH will result in the formation of Fe(OH)₃ precipitate which has a brown gelatinous precipitate.
- The formation of this precipitate cause removal and decrease of Fe³⁺ ions.
- According to Le Chatelier's principle, the system will be shifted to lift to increase Fe³⁺ concentration and reduce the stress of Fe³⁺ removal and readjust the equilibrium again. So, the [Fe(SCN)²⁺] decreases.
- Increasing [Fe³⁺] will produce a yellow color solution that contains a brown gelatinous precipitate of Fe(OH)₃.
Answer:
6 grains
Explanation:
The equation of the reaction between NaOH and aspirin is;
C9H8O4(aq) + NaOH (aq) ------>C9H7O4Na(aq) + H2O(l)
Amount of NaOH reacted = concentration × volume = 0.1466 M × 14.40/1000 L = 2.11 × 10^-3 moles
Given that aspirin and NaOH react in a mole ratio of 1:1 from the balanced reaction equation above, the number of moles of aspirin reacted is 2.11 × 10^-3 moles
Hence mass of aspirin reacted = 2.11 × 10^-3 moles × 180.2 g/mol = 0.38 g
If 1 grain = 0.0648 g
x grains = 0.38 g
x= 0.38 g/0.0648 g
x= 6 grains