Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
INCREASE in temperature of the material practically increase the energy of the particles. which increases their motion due to increase in energy . thus when the temperature is decreased the energy level decreases which causes the particle's motion to slow down.. the motion of the particle is highly reduced when the temperature is lowered
The formula for acceleration is the velocity times the inverse of time so it would be 21 times 1/13. So roughly 0.0769... is the acceleration(m/s^2).