1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
3 years ago
7

A gun shoots a bullet with a velocity of 500 m/s. The gun is aimed horizontally and fired from a height of 1.5 m. How far does t

he bullet travel?
Physics
1 answer:
MrMuchimi3 years ago
5 0

The bullet travels a horizontal distance of 276.5 m

The bullet is shot forward with a horizontal velocity u_x. It takes a time <em>t</em> to fall a vertical distance <em>y</em> and at the same time travels a horizontal distance <em>x. </em>

The bullet's horizontal velocity remains constant since no force acts on the bullet in the horizontal direction.

The initial velocity of the bullet has no component in the vertical direction. As it falls through the vertical distance, it is accelerated due to the force of gravity.

Calculate the time taken for the bullet to fall through a vertical distance <em>y </em>using the equation,

y=u_yt+\frac{1}{2} gt^2

Substitute 0 m/s for u_y, 9.81 m/s²for <em>g</em> and 1.5 m for <em>y</em>.

y=u_yt+\frac{1}{2} gt^2\\ 1.5 m=(0m/s)t+\frac{1}{2} (9.81m/s^2)t^2\\ t=\sqrt{\frac{2(1.5m)}{9.81m/s^2} } =0.5530s

The horizontal distance traveled by the bullet is given by,

x=u_xt

Substitute 500 m/s for u_x and 0.5530s for t.

x=u_xt\\ =(500m/s)(0.5530s)\\ =276.5m

The bullet travels a distance of 276.5 m.


You might be interested in
As the distance between two charged objects increases, the strength of the electrical force between the objects
AveGali [126]

As the distance between two charged objects increases, the strength of the electrical force between the objects  <em>decreases</em>.

7 0
2 years ago
People cannot see certain types of light waves because:
enot [183]

Answer:

Light comes in different colors like radio, ultra violet, gamma-ray, etc, and they are invisible to the bare eye

Explanation:

5 0
1 year ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
A parallel-plate capacitor has a plate area of 0.2 m^2 and a plate separation of 0.1 mm. If the charge on each plate has a magni
barxatty [35]

Answer:

The potential difference across the plates is 226 V.

Explanation:

Given;

area of the capacitor plate, A = 0.2 m²

separation, d = 0.1 mm = 0.1 x 10⁻³ m

charge on each plate, Q = 4 x 10⁻⁶ C

Charge on the capacitor is given by;

Q = CV

Where;

C is the capacitance of the capacitor, given as;

C = ε₀A / d

Then, the potential difference across the plates is given by;

V = \frac{Q}{C} = \frac{Qd}{\epsilon_o A} = \frac{(4*10^{-6})(0.1*10^{-3})}{(8.85*10^{-12})(0.2)}\\\\V = 226 \ V

Therefore, the potential difference across the plates is 226 V.

5 0
2 years ago
You need to design a 60.0-Hz ac generator that has a maximum emf of 5500 V. The generator is to contain a 150-turn coil that has
olchik [2.2K]

Answer:

So magnetic field will be equal to 0.1144 T  

Explanation:

We have given frequency f = 60 Hz

Maximum emf e = 5500 volt

Number of turns N = 150

Area A=0.85m^2

Emf generated in ac generator is given e=NBA\omega sin(\omega t)

For maximum emf sin(\omega t)=1

So maximum emf will be equal to e=NBA\omega

B=\frac{e}{NA\omega }=\frac{5500}{150\times 2\times 3.14\times 60\times 0.85}=0.1144T

So magnetic field will be equal to 0.1144 T

3 0
3 years ago
Other questions:
  • Which would be a common-sense practice in a lab environment?
    13·1 answer
  • HELP PLEASEEE
    11·1 answer
  • A cell is _______ if it lacks a nucleus and membrane-bound organelles.
    5·2 answers
  • Sonar is a device that uses reflected sound waves to measure underwater depths. If a sonar signal has a frequency of 288 Hz and
    6·1 answer
  • A police car waits in hiding slightly off the highway. A speeding car is spotted by the police car doing 40 m/s. At the instant
    11·1 answer
  • The heater element of a particular 120-V toaster is a 8.9-m length of nichrome wire, whose diameter is 0.86 mm. The resistivity
    5·1 answer
  • What was the name of the voyages taken by Zheng he during the Ming dynasty on behalf of China
    13·1 answer
  • PLEASE HELP URGENT!!!!!!!!!!
    6·1 answer
  • Help me out guys<br>I'm stuck in this ​
    5·1 answer
  • A shopping mall is putting up lights for the holidays. When they plug the holiday lights in they do not light up.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!