Answer:
sdoawjdiowadawoi siokdwajsiokwjDIWIAdawidjaskmdnkawdjad kadakwdkawdawhdaw
Explanation: im smart
Hello there what is the question?
Answer:
144g of H₂O
Explanation:
3NH₄ClO₄(s) + 3Al → Al₂O₃(s) + AlCl₃(s) + 3NO(g) + 6H₂O(g)
From the equation:
3 moles of NH₄ClO₄ produced 6 moles of H₂O
4 moles of NH₄ClO₄ produced ? moles of H₂O
(4 ₓ 6)/3 =
= 8 moles of H₂O
1 mole of H₂O = (1 × 2) + 16 = 18g (The Relative Molecular mass of H₂O)
8 moles of H₂O = ?
Therefore 8 × 18 = 144g
=144g of H₂O
HNO3+KOH = H2O+KNO3 . When nitric acid react with pottasuim hydroxide, the reaction will produce water (H20) and pottasuim trioxonitrate
The question is incomplete. The complete question is :
Hydrogen is manufactured on an industrial scale by this sequence of reactions:


The net reaction is :

Write an equation that gives the overall equilibrium constant
in terms of the equilibrium constants
and
. If you need to include any physical constants, be sure you use their standard symbols, which you'll find in the ALEKS Calculator.
Solution :

...............(1)

...................(2)

![$K=\frac{[CO_2][H_2]^4}{[CH_4][H_2O]^2}$](https://tex.z-dn.net/?f=%24K%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%5E4%7D%7B%5BCH_4%5D%5BH_2O%5D%5E2%7D%24)
On multiplication of equation (1) and (2), we get
![$K_1 \times K_2=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \times \frac{[CO_2][H_2]}{[CO][H_2O]}$](https://tex.z-dn.net/?f=%24K_1%20%5Ctimes%20K_2%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5Ctimes%20%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%24)
.................(4)
Comparing equation (3) and equation (4), we get
