<span><span>m1</span>Δ<span>T1</span>+<span>m2</span>Δ<span>T2</span>=0</span>
<span><span>m1</span><span>(<span>Tf</span>l–l<span>T<span>∘1</span></span>)</span>+<span>m2</span><span>(<span>Tf</span>l–l<span>T<span>∘2</span></span>)</span>=0</span>
<span>50.0g×<span>(<span>Tf</span>l–l25.0 °C)</span>+23.0g×<span>(<span>Tf</span>l–l57.0 °C)</span>=0</span>
<span>50.0<span>Tf</span>−1250 °C+23.0<span>Tf</span> – 1311 °C=0</span>
<span>73.0<span>Tf</span>=2561 °C</span>
<span><span>Tf</span>=<span>2561 °C73.0</span>=<span>35.1 °C</span></span>
It's called a compound because different elements are held together by a chemical bond.
Answer:
Homeostasis is the tendency to resist change in order to maintain a stable, relatively constant internal environment. Homeostasis typically involves negative feedback loops that counteract changes of various properties from their target values, known as set points.
Explanation:
So D. Glad to help! :D
The molar<span> volume of an ideal gas is therefore 22.4 dm</span>3<span> at </span>stp<span>. And, of course, you could redo this calculation to find the volume of 1 mole of an ideal gas at room temperature and pressure - or any other temperature and pressure.</span>