Answer: dakdadakdadakdadakda
Explanation:(sings) blah blah blah middle fingers in the air l-l-l-loser
Answer:
≅3666.67 N
Explanation:
Use Newton's 2nd law, F = ma where F=force applied, m = mass of the object,
a = acceleration acquired by the object.
a= (v-u)/t where v = final velocity, u = initial velocity and t = time taken
calculate a = (30-0)/9 ≅ 3.33 m/s2
Then F = 1100×a = 3666.67 N
Answer:
Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force
Explanation:
There are mainly two forces acting between protons and neutrons in the nucleus:
- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

where k is the Coulomb's constant, q1 and q2 are the charges of the two particles, r is the separation between the particles.
The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.
- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.
At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.
Answer:
1. The period is 1.74 s.
2. The frequency is 0.57 Hz
Explanation:
1. Determination of the the period.
Spring constant (K) = 30 N/m
Mass (m) = 2.3 Kg
Pi (π) = 3.14
Period (T) =?
The period of the vibration can be obtained as follow:
T = 2π√(m/K)
T = 2 × 3.14 × √(2.3 / 30)
T = 6.28 × √(2.3 / 30)
T = 1.74 s
Thus, the period of the vibration is 1.74 s.
2. Determination of the frequency.
Period (T) = 1.74 s
Frequency (f) =?
The frequency of the vibration can be obtained as follow:
f = 1/T
f = 1/1.74
f = 0.57 Hz
Thus, the frequency of the vibration is 0.57 Hz
I think the answer is chemical reactions.