Final speed after collision with the wall

before collision the speed of ball initially

time taken for the collision

now as per the formula of acceleration we know that

now plug in all values in it


so acceleration is - 5 m/s/s for above situation
The magnitude of acceleration is (change in speed) / (time for the change).
Change in speed = (speed at the end) - (speed at the beginning) =
(16 m/s) - (0) = 16 m/s .
Time for the change = 4 s .
Magnitude of acceleration = (16 m/s) / (4 s) = 4 m/s per sec = 4 m/s² .
Answer:

Explanation:
Given that,
The current in the loop, I = 2 A
The radius of the loop, r = 0.4 m
We need to find the magnetic field at a distance 0.09 m along the axis and above the center of the loop. The formula for the magnetic field at some distance is given as follows :

Put all the values,

So, the required magnetic field is equal to
.
Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B