The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
a) 32.3 N
The force of gravity (also called weight) on an object is given by
W = mg
where
m is the mass of the object
g is the acceleration of gravity
For the ball in the problem,
m = 3.3 kg
g = 9.8 m/s^2
Substituting, we find the force of gravity on the ball:

b) 48.3 N
The force applied

The ball is kicked with this force, so we can assume that the kick is horizontal.
This means that the applied force and the weight are perpendicular to each other. Therefore, we can find the net force by using Pythagorean's theorem:

And substituting
W = 32.3 N
Fapp = 36 N
We find

c) 
The ball's acceleration can be found by using Newton's second law, which states that
F = ma
where
F is the net force on an object
m is its mass
a is its acceleration
For the ball in this problem,
m = 3.3 kg
F = 48.3 N
Solving the equation for a, we find

Answer:
TRUE
Explanation:
The answer is true.
Balance forces acting on a body will not change the motion of the body because the body experiences no net resultant force in one direction. When any body experiences equal forces with opposite directions, the net force or the resultant force experience by the body is zero.
In case of an unbalanced forces, there is a net force acting in one direction and so it causes the body to change in its state of motion in the direction of the net force.
It would be autotroph and hetrotroph