There are two main points that should be emphasized about the different types of electromagnetic radiation. The sequence from longest wavelength (radio waves) to shortest wavelength (gamma rays) is also a sequence in energy from lowest energy to highest energy
hope this helps you!✌
F = 1440 N. The repulsion force between two identical charges, each -8.00x10⁻⁵C separated by a distance of 20.0 cm is 1440 N.
The easiest way to solve this problem is using Coulomb's Law given by the equation , where k is the constant of proportionality or Coulomb's constant, q₁ and q₂ are the charges magnitude, and r is the distance between them.
We have to identical charges of -8.00x10⁻⁵C, are separated by a distance of 20.0 cm, and we need to know the force of repulsion between the charges.
First, we have to convert 20.0 cm to meters.
(20.0 cm x 1m)/100cm = 0.20 m
Using the Coulomb's Law equation:
Initial momentum = 0.15 kg * (-5 m/s) = - 0.75 N*s
final momentum = 0.15 * ( 3 m/s) = 0.45 N*s
Change in momentum = final momentum - initial momentun =
= 0.45N*s - (- 0.75N*s) = 1.2 N*s
Answer: 1.2 N*s
It depends on what you're using this lightbulb for.
If you're using it to illuminate your walk-in closet, then it's 75% efficient.
If you're using it to warm the basket where the newborn kittens are, then it's only 25% efficient.