<em>im confused hold on imma send you a link to the answer</em>Explanation:
Answer:
19.1 secs
Explanation:
The first step is to calculate the velocity
= 17.4/47.6
= 0.37 m/s
Therefore the time taken for the person to reach the top can be calculated as follows
= 17.4/(0.37+0.541)
= 17.4 / 0.911
= 19.1 secs
Hence the time taken is 19.1 secs
You have to create table using cubic meters and the unit Kelvin to measure the temperature.
(a) Equating centripetal force to friction force, one finds the relation
v² = kar
for car speed v, coefficient of friction k, radius of curvature r, and downward acceleration a.
There is already downward acceleration due to gravity. The additional accceleration due to the wing is
a = F/m = 10600 N/(805 kg) ≈ 13.1677 m/s²
We presume this is added to the 9.80 m/s² gravity provides, so the coefficient of friction is
k = v²/(ar) = (54 m/s)²/((13.1677 m/s² +9.80 m/s²)·(155 m))
k ≈ 0.8191
(b) The maximum speed is proportional to the square root of the downward acceleration. Changing that by a factor of 9.80/(9.80+13.17) changes the maximum speed by the square root of this factor.
max speed with no wing effect = (54 m/s)√(9.8/22.97) ≈ 35.27 m/s
Answer:
An increase in pressure
Explanation:
The ideal gas law states that:

where
p is the gas pressure
V is the volume
n is the number of moles
R is the gas constant
T is the temperature of the gas
in the equation, n and R are constant. For a gas kept at constant volume, V is constant as well. Therefore, from the formula we see that if the temperature (T) is increase, the pressure (p) must increase as well.