Answer: 1
Explanation:
hey i m Lola 16 years old hope this helped you ! :D
Answer:
Part a)

Part b)

Explanation:
As the uniform sphere is rolling down the inclined plane then the net force on the sphere is given as

also we have torque equation on it

for pure rolling


now we have

now we have


now given that

so we have



Part b)
If the inclined plane is frictionless then the acceleration is given as



We can use the equation E = k | Q | r 2 E = k | Q | r2 to find the magnitude of the electric field. The direction of the electric field is determined by the sign of the charge,
<h3>What is electric and magnetic field ?</h3>
With the use of electricity and other types of artificial and natural illumination, invisible energy fields known as electric and magnetic fields (EMFs) and radiation are created.
- While the magnetic field is discernible by the force it exerts on other magnetic particles and moving electric charges, the electric field is actually the force per unit charge experienced by a non-moving point charge at any given location inside the field.
Learn more about Electromagnetic field here:
brainly.com/question/14372859
#SPJ4
Power can be calculate through the equation,
Power = Force x velocity
It should be noted that velocity is calculated by dividing displacement by time. Thus, from the given in this item we can calculate for the power.
Power = (120 lb) x (12 ft/9 s)
<em> </em><span><em>Power = 160 lb.ft/s</em></span>
Explanation:
Given parameters:
Mass of Neil Armstrong = 160kg
Gravitational pull of earth = 10N/kg
Moon's pull = 17% of the earth's pull
Unknown:
Difference between Armstrong's weight on moon and on earth.
Solution:
To find the weight,
Weight = mass x acceleration due to gravity = mg
Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg
Weight on moon = 160 x 1.7 = 272N
Weight on earth = 160 x 10 = 1600N
The difference in weight = 1600 - 272 = 1328N
The weight of Armstrong on earth is 1328N more than on the moon.
Learn more:
Weight and mass brainly.com/question/5956881
#learnwithBrainly