1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ololo11 [35]
3 years ago
14

Question 14 of 25

Physics
2 answers:
natali 33 [55]3 years ago
7 0

the answer is sueist

Explanation:

arsen [322]3 years ago
3 0

Answer:

static

Explanation:

You might be interested in
In the 1887 experiment by Michelson and Morley, the length of each interferometer arm was 11m. The experimental limit on the mea
Vikentia [17]
For the answer to the question above,
we can get the number of fringes by dividing (delta t) by the period of the light (Which is λ/c). 

fringe = (delta t) / (λ/c) 

We can find (delta t) with the equation: 

delta t = [v^2(L1+L2)]/c^3 

Derivation of this formula can be found in your physics text book. From here we find (delta t): 

600,000^2 x (11+11) / [(3x10^8)^3] = 2.93x10^-13 

2.93x10^-13/ (589x10^-9 / 3x10^8) = 149 fringes 

This answer is correct but may seem large. That is because of your point of reference with the ether which is usually at rest with respect to the sun, making v = 3km/s. 
4 0
3 years ago
Two charges, one of 2.50μC and the other of -3.50μC, are placed on the x-axis, one at the origin and the other at x = 0.600 m
aev [14]

Answer:

Explanation:

Given

charge of first body q_1=2.5\ mu C

charge of second body q_2=-3.5\ mu C

Particle 1 is at origin and particle 2 is at x=0.6\ m

third Particle which charge +q must be placed left of 2.5\mu C because it will repel the q charge while -3.5\mu C will attract it

suppose it is placed at a distance of x m

F_{1q}=\frac{kq(2.5)}{x^2}

F_{2q}=\frac{kq(-3.5)}{(0.6+x)^2}

F_{1q}+F_{2q}=0

\frac{kq(2.5)}{x^2}+\frac{kq(-3.5)}{(0.6+x)^2}=0

\frac{kq(2.5)}{x^2}=\frac{kq(3.5)}{(0.6+x)^2}

\frac{0.6+x}{x}=(\frac{3.5}{2.5})^{0.5}

0.6+x=1.1832x

x=3.27\ m

5 0
4 years ago
The launching velocity of a missile is 20.0 m/s, and it is shot at 53º above the horizontal. What is the vertical component of t
Lyrx [107]

Given that

Velocity of missile (v) = 20 m/s ,

Angle of missile (Θ) = 53°

Determine ,   Vertical component  = v sin Θ

                                                        = 20 sin 53°

                                                        = 15.97 m/s

6 0
4 years ago
A 2.13-kg object on a frictionless horizontal track is attached to the end of a horizontal spring whose force constant is 5.00 N
ANTONII [103]

Answer:

17.54N in -x direction.

Explanation:

Amplitude (A) = 3.54m

Force constant (k) = 5N/m

Mass (m) = 2.13kg

Angular frequency ω = √(k/m)

ω = √(5/2.13)

ω = 1.53 rad/s

The force acting on the object F(t) = ?

F(t) = -mAω²cos(ωt)

F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)

F(t) = -17.65 * cos (5.355)

F(t) = -17.57N

The force is 17.57 in -x direction

5 0
4 years ago
(15pts) A hungry 12.0 kg fish is coasting from west to east at 75 cm/s when it suddenly swallows a 1 kg fish swimming towards it
faust18 [17]

Answer:

The speed of the big fish after swallowing the small fish is 0.38 m/s.

Explanation:

Consider west to east direction as positive and the opposite direction as negative.

Given:

Mass of big fish (m₁) = 12.0 kg

Initial velocity of big fish (u₁) = 75 cm/s = 0.75 m/s

Mass of small fish (m₂) = 1 kg

Initial velocity of small fish (u₂) = -4 m/s (Direction is opposite to u₁)

After swallowing the small fish, both the fishes move together with same velocity. Let the velocity be 'v'.

So, as there are no effects of drag or any other forces, the given scenario can be considered as a case of inelastic collision where the objects move together with same velocity after collision.

The momentum is conserved in inelastic collision. Therefore,

Initial momentum of the fishes = Final momentum of the fishes

m_1u_1+m_2u_2=(m_1+m_2)v\\\\v=\dfrac{m_1u_1+m_2u_2}{m_1+m_2}

Now, plug in the given values and solve for 'v'. This gives,

v=\frac{12.0\times 0.75+1\times (-4)}{12.0+1}\\\\v=\frac{9-4}{13}\\\\v=\frac{5}{13}=0.38\ m/s

Therefore, the speed of the big fish after swallowing the small fish is 0.38 m/s

3 0
3 years ago
Other questions:
  • Two boys want to balance a seesaw perfectly. One boy weighs 120 pounds and is sitting four feet from the fulcrum. The other boy
    7·1 answer
  • Since rods are about 1000 times more sensitive than cones (at 470 nm), they should be able to detect smaller values of the elect
    8·1 answer
  • Your boss tells you that she needs a decision by the end of the day about the machine you want to purchase for your new operatio
    9·2 answers
  • What do scientist need to look at before developing
    15·1 answer
  • Train cars are coupled together by being bumped into one another. Suppose two loaded train cars are moving toward one another, t
    15·1 answer
  • Arrange the skin layers according to the order in which a physician would cut them off during surgery, starting with the first a
    13·1 answer
  • Halving the distance (i.e., decreasing by a factor of two) between two charged objects will cause the electrical force between t
    8·1 answer
  • What is the minimum speed necessary to make it safely??
    7·1 answer
  • A mass is undergoing simple harmonic motion. When its displacement is 0, it is at its equilibrium position. At that moment, its
    5·2 answers
  • A battery-powered lawn mower has a mass of 48.0 kg. If the net external force on
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!