Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;
Where
V = voltage difference ; in volts
I = Current ; in Amperes
R = Resistance ; in ohms
<u>1. Answer : </u> given that R = 10 ; V= 12 V ; I = ?
From ohms law, I = V/R
= 12/10
= 1.2 Amp.
<u>2. Answer:</u> given that R = 10 ; V= ? ; I = 5
From ohms law, V = IR
= 10×5 = 50 V
<u>3 . Answer:</u> given that R = ? ; V= 120 ; I = 5
From ohms law, R = V/I
= 120/5
= 24 Ω
<u>4 . Answer:</u> given that R = ? ; V= 10 ; I = 20
From ohms law, R = V/I
= 10/20
= 0.5 Ω
<u>5 . Answer:</u> given that R = 480 ; V= 24 ; I = ?
From ohms law, I = V/R
= 24/480
= 0.05 A
<u>6. Answer:</u> given that R = 150 ; V= ? ; I = 1
From ohms law, V = IR
= 1 × 150
= 150 V
A change in position with respect to a reference point is called motion
hope it helps...
Answer:
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.
Answer:
1:2
Explanation:
It is given that,
Initial RMS AC voltage is 100 V and final RMS AC voltage is 200 V.
We need to find the ratio of the number of turns in the primary to the secondary for step up transformer.
For a transformer, 
So,

So, the ratio of the number of turns in the primary to the secondary is 1:2.